distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1749
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0517 1.0 225 2.0004 0.47
1.3283 2.0 450 1.3458 0.57
0.729 3.0 675 0.8563 0.76
0.4007 4.0 900 0.6748 0.8
0.3923 5.0 1125 0.7340 0.78
0.2193 6.0 1350 0.8712 0.76
0.2383 7.0 1575 0.7414 0.79
0.3 8.0 1800 0.7387 0.86
0.006 9.0 2025 0.9203 0.85
0.002 10.0 2250 0.8956 0.85
0.0014 11.0 2475 0.9831 0.86
0.001 12.0 2700 0.9406 0.86
0.0009 13.0 2925 1.0288 0.86
0.0007 14.0 3150 1.0172 0.86
0.0007 15.0 3375 0.9912 0.89
0.0005 16.0 3600 1.0282 0.86
0.0006 17.0 3825 1.3495 0.83
0.2453 18.0 4050 1.0340 0.87
0.0004 19.0 4275 1.1048 0.86
0.0004 20.0 4500 1.3051 0.85
0.0003 21.0 4725 1.2280 0.85
0.0003 22.0 4950 1.2530 0.85
0.0003 23.0 5175 1.1992 0.85
0.0003 24.0 5400 1.1881 0.85
0.0003 25.0 5625 1.1749 0.86

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AlirezaTirehkar/distilhubert-finetuned-gtzan

Finetuned
(421)
this model

Dataset used to train AlirezaTirehkar/distilhubert-finetuned-gtzan

Evaluation results