Model description
The model is intended to be used to predict if a person is likely to get a stroke or not
Intended uses & limitations
[More Information Needed]
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
objective | binary:logistic |
base_score | |
booster | |
callbacks | |
colsample_bylevel | 0.9076228511174643 |
colsample_bynode | |
colsample_bytree | 0.8045246933821307 |
device | |
early_stopping_rounds | |
enable_categorical | False |
eval_metric | |
feature_types | |
gamma | |
grow_policy | |
importance_type | |
interaction_constraints | |
learning_rate | 0.0711965541329635 |
max_bin | |
max_cat_threshold | |
max_cat_to_onehot | |
max_delta_step | |
max_depth | |
max_leaves | 4 |
min_child_weight | 0.27994747825685384 |
missing | nan |
monotone_constraints | |
multi_strategy | |
n_estimators | 35 |
n_jobs | |
num_parallel_tree | |
random_state | |
reg_alpha | 0.0009765625 |
reg_lambda | 2.991485993669717 |
sampling_method | |
scale_pos_weight | |
subsample | 0.8073913094722203 |
tree_method | |
validate_parameters | |
verbosity |
Model Plot
XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=0.9076228511174643, colsample_bynode=None,colsample_bytree=0.8045246933821307, device=None,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, feature_types=None, gamma=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=0.0711965541329635,max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=4,min_child_weight=0.27994747825685384, missing=nan,monotone_constraints=None, multi_strategy=None, n_estimators=35,n_jobs=None, num_parallel_tree=None, random_state=None, ...)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=0.9076228511174643, colsample_bynode=None,colsample_bytree=0.8045246933821307, device=None,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, feature_types=None, gamma=None,grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=0.0711965541329635,max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=4,min_child_weight=0.27994747825685384, missing=nan,monotone_constraints=None, multi_strategy=None, n_estimators=35,n_jobs=None, num_parallel_tree=None, random_state=None, ...)
Evaluation Results
Metric | Value |
---|---|
accuracy | 0.78 |
Confusion Matrix
How to Get Started with the Model
[More Information Needed]
Model Card Authors
Alexander Lindström
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
precision recall f1-score support
class 0 0.98 0.78 0.87 960
class 1 0.18 0.76 0.29 62
accuracy 0.78 1022
macro avg 0.58 0.77 0.58 1022 weighted avg 0.93 0.78 0.83 1022
Metric | Value |
---|---|
accuracy | 0.78 |
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.