Edit model card

whisper-lt-finetune

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2550
  • Wer: 13.5797

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1556 0.97 1000 0.2354 15.2781
0.0709 1.95 2000 0.2336 14.6419
0.0259 2.92 3000 0.2415 14.0186
0.0098 3.89 4000 0.2496 13.7355
0.0056 4.87 5000 0.2550 13.5797

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train AlexMo/improved_whisper_model

Space using AlexMo/improved_whisper_model 1

Evaluation results