sentence-compression-roberta
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3465
- Accuracy: 0.8473
- F1: 0.6835
- Precision: 0.6835
- Recall: 0.6835
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5312 | 1.0 | 50 | 0.5251 | 0.7591 | 0.0040 | 0.75 | 0.0020 |
0.4 | 2.0 | 100 | 0.4003 | 0.8200 | 0.5341 | 0.7113 | 0.4275 |
0.3355 | 3.0 | 150 | 0.3465 | 0.8473 | 0.6835 | 0.6835 | 0.6835 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.