Upload 3 files
#13
by
Lewdiculous
- opened
extra-files/llama-3-config-files/config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 128000,
|
8 |
+
"eos_token_id": 128009,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 8192,
|
14 |
+
"model_type": "llama",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 500000.0,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.40.0.dev0",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 128256,
|
27 |
+
"quantization_config": {
|
28 |
+
"quant_method": "exl2",
|
29 |
+
"version": "0.0.18",
|
30 |
+
"bits": 5.0,
|
31 |
+
"head_bits": 6,
|
32 |
+
"calibration": {
|
33 |
+
"rows": 100,
|
34 |
+
"length": 2048,
|
35 |
+
"dataset": "(default)"
|
36 |
+
}
|
37 |
+
}
|
38 |
+
}
|
extra-files/llama-3-config-files/generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128009,
|
5 |
+
"transformers_version": "4.40.0.dev0"
|
6 |
+
}
|
gguf-imat-llama-3.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import zipfile
|
4 |
+
import subprocess
|
5 |
+
import shutil
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
|
8 |
+
# Clone or update the llama.cpp repository with --depth 1
|
9 |
+
def clone_or_update_llama_cpp():
|
10 |
+
print("Preparing...")
|
11 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
12 |
+
os.chdir(base_dir)
|
13 |
+
if not os.path.exists("llama.cpp"):
|
14 |
+
subprocess.run(["git", "clone", "--depth", "1", "https://github.com/ggerganov/llama.cpp"])
|
15 |
+
else:
|
16 |
+
os.chdir("llama.cpp")
|
17 |
+
subprocess.run(["git", "pull"])
|
18 |
+
os.chdir(base_dir)
|
19 |
+
print("The 'llama.cpp' repository is ready.")
|
20 |
+
|
21 |
+
# Download and extract the latest release of llama.cpp Windows binaries
|
22 |
+
def download_llama_release():
|
23 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
24 |
+
dl_dir = os.path.join(base_dir, "bin", "dl")
|
25 |
+
if not os.path.exists(dl_dir):
|
26 |
+
os.makedirs(dl_dir)
|
27 |
+
|
28 |
+
os.chdir(dl_dir)
|
29 |
+
latest_release_url = "https://github.com/ggerganov/llama.cpp/releases/latest"
|
30 |
+
response = requests.get(latest_release_url)
|
31 |
+
if response.status_code == 200:
|
32 |
+
latest_release_tag = response.url.split("/")[-1]
|
33 |
+
download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip"
|
34 |
+
response = requests.get(download_url)
|
35 |
+
if response.status_code == 200:
|
36 |
+
with open(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "wb") as f:
|
37 |
+
f.write(response.content)
|
38 |
+
with zipfile.ZipFile(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "r") as zip_ref:
|
39 |
+
zip_ref.extractall(os.path.join(base_dir, "bin"))
|
40 |
+
print("Downloading latest 'llama.cpp' prebuilt Windows binaries...")
|
41 |
+
print("Download and extraction completed successfully.")
|
42 |
+
return latest_release_tag
|
43 |
+
else:
|
44 |
+
print("Failed to download the release file.")
|
45 |
+
else:
|
46 |
+
print("Failed to fetch the latest release information.")
|
47 |
+
|
48 |
+
# Download and extract the Cuda .dll resources if they aren't present in the bin folder
|
49 |
+
def download_cudart_if_necessary(latest_release_tag):
|
50 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
51 |
+
cudart_dl_dir = os.path.join(base_dir, "bin", "dl")
|
52 |
+
if not os.path.exists(cudart_dl_dir):
|
53 |
+
os.makedirs(cudart_dl_dir)
|
54 |
+
|
55 |
+
cudart_zip_file = os.path.join(cudart_dl_dir, "cudart-llama-bin-win-cu12.2.0-x64.zip")
|
56 |
+
cudart_extracted_files = ["cublas64_12.dll", "cublasLt64_12.dll", "cudart64_12.dll"]
|
57 |
+
|
58 |
+
# Check if all required files exist
|
59 |
+
if all(os.path.exists(os.path.join(base_dir, "bin", file)) for file in cudart_extracted_files):
|
60 |
+
print("Cuda resources already exist. Skipping download.")
|
61 |
+
else:
|
62 |
+
cudart_download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/cudart-llama-bin-win-cu12.2.0-x64.zip"
|
63 |
+
response = requests.get(cudart_download_url)
|
64 |
+
if response.status_code == 200:
|
65 |
+
with open(cudart_zip_file, "wb") as f:
|
66 |
+
f.write(response.content)
|
67 |
+
with zipfile.ZipFile(cudart_zip_file, "r") as zip_ref:
|
68 |
+
zip_ref.extractall(os.path.join(base_dir, "bin"))
|
69 |
+
print("Preparing 'cuda' resources...")
|
70 |
+
print("Download and extraction of cudart completed successfully.")
|
71 |
+
else:
|
72 |
+
print("Failed to download the cudart release file.")
|
73 |
+
|
74 |
+
# Ask for user input to download or fetch from cache the specified model repository if it doesn't exist
|
75 |
+
def download_model_repo():
|
76 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
77 |
+
models_dir = os.path.join(base_dir, "models")
|
78 |
+
if not os.path.exists(models_dir):
|
79 |
+
os.makedirs(models_dir)
|
80 |
+
|
81 |
+
model_id = input("Enter the model ID to download (e.g., huggingface/transformers): ")
|
82 |
+
model_name = model_id.split("/")[-1]
|
83 |
+
model_dir = os.path.join(models_dir, model_name)
|
84 |
+
|
85 |
+
# Check if the model repository already exists
|
86 |
+
if os.path.exists(model_dir):
|
87 |
+
print("Model repository already exists. Using existing repository.")
|
88 |
+
|
89 |
+
# If the model already exists, prompt the user if they want to delete the model directory
|
90 |
+
delete_model_dir = input("Remove HF model folder after converting original model to GGUF? (yes/no) (default: no): ").strip().lower()
|
91 |
+
|
92 |
+
# Ask for the name of the imatrix.txt file
|
93 |
+
imatrix_file_name = input("Enter the name of the imatrix.txt file (default: imatrix.txt): ").strip() or "imatrix.txt"
|
94 |
+
|
95 |
+
# Convert the existing model to GGUF F16 format and generate imatrix.dat
|
96 |
+
convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name)
|
97 |
+
|
98 |
+
else:
|
99 |
+
revision = input("Enter the revision (branch, tag, or commit) to download (default: main): ") or "main"
|
100 |
+
|
101 |
+
# Ask the user if they want to remove the HF model folder after conversion
|
102 |
+
delete_model_dir = input("Remove HF model folder after converting original model to GGUF? (yes/no) (default: no): ").strip().lower()
|
103 |
+
|
104 |
+
print("Downloading model repository...")
|
105 |
+
snapshot_download(repo_id=model_id, local_dir=model_dir, revision=revision)
|
106 |
+
print("Model repository downloaded successfully.")
|
107 |
+
|
108 |
+
# Ask for the name of the imatrix.txt file
|
109 |
+
imatrix_file_name = input("Enter the name of the imatrix.txt file (default: imatrix.txt): ").strip() or "imatrix.txt"
|
110 |
+
|
111 |
+
# Convert the downloaded model to GGUF F16 format and generate imatrix.dat
|
112 |
+
convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name)
|
113 |
+
|
114 |
+
# Convert the downloaded model to GGUF F16 format
|
115 |
+
def convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name):
|
116 |
+
convert_script = os.path.join(base_dir, "llama.cpp", "convert.py")
|
117 |
+
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
|
118 |
+
gguf_model_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")
|
119 |
+
|
120 |
+
if not os.path.exists(gguf_dir):
|
121 |
+
os.makedirs(gguf_dir)
|
122 |
+
|
123 |
+
# Check if F16 file already exists
|
124 |
+
if not os.path.exists(gguf_model_path):
|
125 |
+
# Execute the conversion command
|
126 |
+
subprocess.run(["python", convert_script, model_dir, "--outfile", gguf_model_path, "--outtype", "f16", "--vocab-type", "bpe"])
|
127 |
+
|
128 |
+
# Delete the original model directory under conditions
|
129 |
+
if delete_model_dir == 'yes' or delete_model_dir == 'y':
|
130 |
+
shutil.rmtree(model_dir)
|
131 |
+
print(f"Original model directory '{model_dir}' deleted.")
|
132 |
+
else:
|
133 |
+
print(f"Original model directory '{model_dir}' was not deleted. You can remove it manually.")
|
134 |
+
|
135 |
+
# Generate imatrix.dat if it doesn't exist
|
136 |
+
imatrix_exe = os.path.join(base_dir, "bin", "imatrix.exe")
|
137 |
+
imatrix_output = os.path.join(gguf_dir, "imatrix.dat")
|
138 |
+
imatrix_txt = os.path.join(base_dir, "imatrix", imatrix_file_name)
|
139 |
+
if not os.path.exists(imatrix_output):
|
140 |
+
# Execute the imatrix command
|
141 |
+
subprocess.run([imatrix_exe, "-m", gguf_model_path, "-f", imatrix_txt, "-ngl", "8"], cwd=gguf_dir)
|
142 |
+
# Move the imatrix.dat file to the GGUF folder
|
143 |
+
if os.path.exists(os.path.join(gguf_dir, "imatrix.dat")):
|
144 |
+
shutil.move(os.path.join(gguf_dir, "imatrix.dat"), gguf_dir)
|
145 |
+
print("imatrix.dat generated successfully.")
|
146 |
+
else:
|
147 |
+
print("Failed to generate imatrix.dat file.")
|
148 |
+
else:
|
149 |
+
print("Skipping imatrix generation as imatrix.dat already exists.")
|
150 |
+
|
151 |
+
# Quantize the models
|
152 |
+
quantize_models(base_dir, model_name)
|
153 |
+
|
154 |
+
# Quantize models with different options
|
155 |
+
def quantize_models(base_dir, model_name):
|
156 |
+
gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
|
157 |
+
f16_gguf_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")
|
158 |
+
|
159 |
+
quantization_options = [
|
160 |
+
"IQ3_M", "IQ3_XXS",
|
161 |
+
"Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS",
|
162 |
+
"Q5_K_M", "Q5_K_S",
|
163 |
+
"Q6_K",
|
164 |
+
"Q8_0"
|
165 |
+
]
|
166 |
+
|
167 |
+
for quant_option in quantization_options:
|
168 |
+
quantized_gguf_name = f"{model_name}-{quant_option}-imat.gguf"
|
169 |
+
quantized_gguf_path = os.path.join(gguf_dir, quantized_gguf_name)
|
170 |
+
quantize_command = os.path.join(base_dir, "bin", "quantize.exe")
|
171 |
+
imatrix_path = os.path.join(gguf_dir, "imatrix.dat")
|
172 |
+
|
173 |
+
subprocess.run([quantize_command, "--imatrix", imatrix_path,
|
174 |
+
f16_gguf_path, quantized_gguf_path, quant_option], cwd=gguf_dir)
|
175 |
+
print(f"Model quantized with {quant_option} option.")
|
176 |
+
|
177 |
+
# Main function - Steps
|
178 |
+
def main():
|
179 |
+
clone_or_update_llama_cpp()
|
180 |
+
latest_release_tag = download_llama_release()
|
181 |
+
download_cudart_if_necessary(latest_release_tag)
|
182 |
+
download_model_repo()
|
183 |
+
print("Finished preparing resources.")
|
184 |
+
|
185 |
+
if __name__ == "__main__":
|
186 |
+
main()
|