Edit model card

image/png

Hallawa3: The Fusion of Expertise and Precision for 7B Models"

Unveiling 'Hallawa', an AI marvel that embodies the perfect blend of expert knowledge and cutting-edge technology, tailored for 7B models where direct answers are paramount. This AI powerhouse excels in delivering precise responses, ideal for use cases that demand accuracy and immediacy. Excelling in document understanding and prompts in its size. With 'Hallawa', you tap into a repository of intelligence that's been acknowledged by over 1400 downloads on the OpenLLM leaderboard, boasting a remarkable score of 71. This model isn't just about quantity but quality, setting new benchmarks in the realm of language models.

Whether you're looking to enhance customer service, drive research, or accelerate decision-making, 'Hallawa' stands as your go-to solution, engineered to exceed expectations in scenarios where only the most accurate and immediate answers will suffice. Join the ranks of those leveraging 'Hallawa' for their most critical applications and witness the transformation it brings to your operations. haLLAwa3 is a merge of the following models using mergekit:

🧩 Configuration

slices:
  - sources:
      - model: openchat/openchat-3.5-0106
        layer_range: [0, 32]
      - model: machinists/Mistral-7B-SQL
        layer_range: [0, 32]
merge_method: slerp
base_model: openchat/openchat-3.5-0106
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.34
AI2 Reasoning Challenge (25-Shot) 67.83
HellaSwag (10-Shot) 87.02
MMLU (5-Shot) 64.23
TruthfulQA (0-shot) 63.71
Winogrande (5-shot) 80.51
GSM8k (5-shot) 64.75
Downloads last month
110
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results