Llama-3.2-1B-ultrachat200k
Model Details
- Model type: sft model
- License: llama3.2
- Finetuned from model: meta-llama/Llama-3.2-1B
- Training data: HuggingFaceH4/ultrachat_200k
- Training framework: trl
Training Details
Training Hyperparameters
attn_implementation
: flash_attention_2 bf16
: True learning_rate
: 2e-5 lr_scheduler_type
: cosine per_device_train_batch_size
: 2 gradient_accumulation_steps
: 16 torch_dtype
: bfloat16 num_train_epochs
: 1 max_seq_length
: 2048 warmup_ratio
: 0.1
Results
init_train_loss
: 1.726 final_train_loss
: 1.22 \
Training script
import multiprocessing
from datasets import load_dataset
from tqdm.rich import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import (
ModelConfig,
SFTTrainer,
get_peft_config,
get_quantization_config,
get_kbit_device_map,
SFTConfig,
ScriptArguments,
TrlParser
)
tqdm.pandas()
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=model_config.torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path,
**model_kwargs)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, use_fast=True
)
tokenizer.pad_token = '<|end_of_text|>'
train_dataset = load_dataset(args.dataset_name,
split=args.dataset_train_split,
num_proc=multiprocessing.cpu_count())
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
processing_class=tokenizer,
peft_config=get_peft_config(model_config),
)
trainer.train()
trainer.save_model(training_args.output_dir)
Test Script
from vllm import LLM
from datasets import load_dataset
from vllm.sampling_params import SamplingParams
from transformers import AutoTokenizer
MODEL_PATH = "autodl-tmp/saves/Llama-3.2-1B-ultrachat200k"
model = LLM(MODEL_PATH,
tensor_parallel_size=1,
dtype='bfloat16')
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
input = tokenizer.apply_chat_template([{"role": "user", "content": "Where is Harbin?"}],
tokenize=False,
add_generation_prompt=True)
sampling_params = SamplingParams(max_tokens=1024,
temperature=0.7,
logprobs=1,
stop_token_ids=[tokenizer.eos_token_id])
vllm_generations = model.generate(input,
sampling_params)
print(vllm_generations[0].outputs[0].text)
# print result: Harbin is located in northeastern China in the Heilongjiang province. It is the capital of Heilongjiang province in the Northeast Asia.
- Downloads last month
- 40
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.