MARTINI_enrich_BERTopic_joinmiFight

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_joinmiFight")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 9
  • Number of training documents: 1033
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 pfizer - vaxx - bioweapons - biden - 2021 21 -1_pfizer_vaxx_bioweapons_biden
0 god - trump - freedoms - unrighteousness - warmongers 586 0_god_trump_freedoms_unrighteousness
1 vaccinated - pfizer - injections - hospitalizations - 2021 120 1_vaccinated_pfizer_injections_hospitalizations
2 vaccine - mrna - injections - nanotechnologies - dr 70 2_vaccine_mrna_injections_nanotechnologies
3 transhumanism - darpa - neuralink - chatgpt - blinken 60 3_transhumanism_darpa_neuralink_chatgpt
4 pfizer - biowarfare - dod - prosecuting - liability 55 4_pfizer_biowarfare_dod_prosecuting
5 fauci - karen - whistleblower - livestream - mikovits 51 5_fauci_karen_whistleblower_livestream
6 sars - bioweapons - vaccine - darpa - aerosolized 38 6_sars_bioweapons_vaccine_darpa
7 fauci - sarscov - funded - wuhan - huff 32 7_fauci_sarscov_funded_wuhan

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.