MARTINI_enrich_BERTopic_Planet_Earth
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_Planet_Earth")
topic_model.get_topic_info()
Topic overview
- Number of topics: 5
- Number of training documents: 202
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | tower - tundra - lake - sicily - village | 24 | -1_tower_tundra_lake_sicily |
0 | dolphins - monkeys - moose - kangaroos - hear | 46 | 0_dolphins_monkeys_moose_kangaroos |
1 | manali - pathankot - photos - varanasi - uttarakhand | 63 | 1_manali_pathankot_photos_varanasi |
2 | natura - telegram - birthday - picture - 2015 | 35 | 2_natura_telegram_birthday_picture |
3 | wildlife - himalayas - giraffes - tanzania - endangered | 34 | 3_wildlife_himalayas_giraffes_tanzania |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.5.2
- Sentence-transformers: 3.3.1
- Transformers: 4.46.3
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.10.12
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.