xtremedistil-l6-h384-uncased-v2.0

This model is a fine-tuned version of microsoft/xtremedistil-l6-h384-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5278
  • F1 Macro: 0.6999
  • F1 Micro: 0.7000
  • Accuracy Balanced: 0.7017
  • Accuracy: 0.7000
  • Precision Macro: 0.7009
  • Recall Macro: 0.7017
  • Precision Micro: 0.7000
  • Recall Micro: 0.7000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 40
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.6275 0.17 200 0.6177 0.3647 0.5463 0.5039 0.5463 0.6163 0.5039 0.5463 0.5463
0.5811 0.34 400 0.5808 0.5807 0.6194 0.5976 0.6194 0.6331 0.5976 0.6194 0.6194
0.5769 0.51 600 0.5680 0.6564 0.6585 0.6703 0.6585 0.6796 0.6703 0.6585 0.6585
0.5647 0.68 800 0.5634 0.6703 0.6728 0.6855 0.6728 0.6976 0.6855 0.6728 0.6728
0.5607 0.85 1000 0.5720 0.6176 0.6448 0.6264 0.6448 0.6569 0.6264 0.6448 0.6448
0.5645 1.02 1200 0.5617 0.6523 0.6601 0.6521 0.6601 0.6581 0.6521 0.6601 0.6601
0.5665 1.19 1400 0.5479 0.6802 0.6840 0.6986 0.6840 0.7172 0.6986 0.6840 0.6840
0.5432 1.35 1600 0.5540 0.6642 0.6665 0.6644 0.6665 0.6641 0.6644 0.6665 0.6665
0.5427 1.52 1800 0.5520 0.6533 0.6617 0.6532 0.6617 0.6601 0.6532 0.6617 0.6617
0.5453 1.69 2000 0.5487 0.6756 0.6781 0.6755 0.6781 0.6757 0.6755 0.6781 0.6781
0.5528 1.86 2200 0.5492 0.6720 0.6771 0.6713 0.6771 0.6747 0.6713 0.6771 0.6771
0.531 2.03 2400 0.5476 0.6799 0.6803 0.6882 0.6803 0.6911 0.6882 0.6803 0.6803
0.5199 2.2 2600 0.5454 0.6823 0.6824 0.6863 0.6824 0.6856 0.6863 0.6824 0.6824
0.535 2.37 2800 0.5441 0.6797 0.6803 0.6817 0.6803 0.6804 0.6817 0.6803 0.6803
0.5246 2.54 3000 0.5453 0.6746 0.6750 0.6771 0.6750 0.6759 0.6771 0.6750 0.6750
0.5405 2.71 3200 0.5408 0.6824 0.6861 0.6819 0.6861 0.6836 0.6819 0.6861 0.6861
0.5414 2.88 3400 0.5404 0.6826 0.6834 0.6841 0.6834 0.6828 0.6841 0.6834 0.6834

eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.511 0.701 0.539 0.528
eval_f1_macro 0.717 0.488 0.684 0.7
eval_f1_micro 0.718 0.506 0.684 0.7
eval_accuracy_balanced 0.719 0.501 0.687 0.702
eval_accuracy 0.718 0.506 0.684 0.7
eval_precision_macro 0.718 0.501 0.686 0.701
eval_recall_macro 0.719 0.501 0.687 0.702
eval_precision_micro 0.718 0.506 0.684 0.7
eval_recall_micro 0.718 0.506 0.684 0.7
eval_runtime 8.868 0.186 1.876 7.42
eval_samples_per_second 958.472 5096.766 1006.985 1018.427
eval_steps_per_second 7.555 43.102 7.996 8.086
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
8
Inference API
Unable to determine this model's library. Check the docs .

Model tree for 61347023S/xtremedistil-l6-h384-uncased-v2.0

Finetuned
(9)
this model