xlm-roberta-large-xnli-anli-v2.0

This model is a fine-tuned version of vicgalle/xlm-roberta-large-xnli-anli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3375
  • F1 Macro: 0.8802
  • F1 Micro: 0.8809
  • Accuracy Balanced: 0.8798
  • Accuracy: 0.8809
  • Precision Macro: 0.8808
  • Recall Macro: 0.8798
  • Precision Micro: 0.8809
  • Recall Micro: 0.8809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-06
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 40
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.4942 0.17 200 0.4413 0.8081 0.8089 0.8093 0.8089 0.8076 0.8093 0.8089 0.8089
0.4114 0.34 400 0.3991 0.8227 0.8232 0.8250 0.8232 0.8226 0.8250 0.8232 0.8232
0.3467 0.51 600 0.3584 0.8388 0.8391 0.8421 0.8391 0.8396 0.8421 0.8391 0.8391
0.3402 0.68 800 0.3620 0.8534 0.8544 0.8536 0.8544 0.8532 0.8536 0.8544 0.8544
0.3304 0.85 1000 0.3385 0.8566 0.8576 0.8567 0.8576 0.8565 0.8567 0.8576 0.8576
0.3234 1.02 1200 0.3456 0.8637 0.8650 0.8631 0.8650 0.8645 0.8631 0.8650 0.8650
0.2702 1.19 1400 0.3201 0.8606 0.8613 0.8616 0.8613 0.8600 0.8616 0.8613 0.8613
0.2581 1.36 1600 0.3233 0.8619 0.8624 0.8639 0.8624 0.8615 0.8639 0.8624 0.8624
0.2414 1.52 1800 0.3451 0.8674 0.8687 0.8664 0.8687 0.8687 0.8664 0.8687 0.8687
0.2687 1.69 2000 0.3415 0.8577 0.8608 0.8544 0.8608 0.8677 0.8544 0.8608 0.8608
0.2518 1.86 2200 0.3378 0.8684 0.8692 0.8688 0.8692 0.8681 0.8688 0.8692 0.8692
0.2182 2.03 2400 0.3581 0.8698 0.8708 0.8697 0.8708 0.8700 0.8697 0.8708 0.8708
0.1919 2.2 2600 0.3671 0.8677 0.8687 0.8676 0.8687 0.8678 0.8676 0.8687 0.8687
0.1771 2.37 2800 0.3790 0.8709 0.8719 0.8707 0.8719 0.8710 0.8707 0.8719 0.8719
0.1793 2.54 3000 0.3856 0.8687 0.8692 0.8701 0.8692 0.8680 0.8701 0.8692 0.8692
0.1909 2.71 3200 0.3777 0.8686 0.8698 0.8682 0.8698 0.8691 0.8682 0.8698 0.8698
0.2021 2.88 3400 0.3685 0.8701 0.8708 0.8710 0.8708 0.8696 0.8710 0.8708 0.8708

eval result

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.355 0.246 0.369 0.337
eval_f1_macro 0.872 0.932 0.872 0.88
eval_f1_micro 0.873 0.932 0.873 0.881
eval_accuracy_balanced 0.872 0.932 0.873 0.88
eval_accuracy 0.873 0.932 0.873 0.881
eval_precision_macro 0.873 0.932 0.872 0.881
eval_recall_macro 0.872 0.932 0.873 0.88
eval_precision_micro 0.873 0.932 0.873 0.881
eval_recall_micro 0.873 0.932 0.873 0.881
eval_runtime 50.57 0.614 11.127 44.11
eval_samples_per_second 168.083 1541.862 169.759 171.323
eval_steps_per_second 2.63 24.448 2.696 2.698
Size of dataset 8500 946 1889 7557

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3
Downloads last month
14
Inference API
Unable to determine this model's library. Check the docs .

Model tree for 61347023S/xlm-roberta-large-xnli-anli-v2.0

Finetuned
(4)
this model