File size: 8,337 Bytes
69c99d0 436e78d 69c99d0 a291bf0 ccc62ae a291bf0 af70757 a291bf0 af70757 a291bf0 af70757 a291bf0 616fc5a a291bf0 616fc5a a291bf0 616fc5a 6afa72f 616fc5a fb8ac6f 0a16ba7 6afa72f 0a16ba7 6afa72f 0a16ba7 704c6e4 0a16ba7 6afa72f 0a16ba7 616fc5a af70757 22b0ac8 241f9ee 22b0ac8 1dc6e2b 22b0ac8 241f9ee 22b0ac8 af70757 22b0ac8 0a16ba7 241f9ee 0a16ba7 241f9ee 616fc5a 0a16ba7 436e78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
license: apache-2.0
model-index:
- name: Yi-1.5-9B-Chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=01-ai/Yi-1.5-9B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.94
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=01-ai/Yi-1.5-9B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=01-ai/Yi-1.5-9B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.67
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=01-ai/Yi-1.5-9B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=01-ai/Yi-1.5-9B-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.87
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=01-ai/Yi-1.5-9B-Chat
name: Open LLM Leaderboard
---
<div align="center">
<picture>
<img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="150px">
</picture>
</div>
<p align="center">
<a href="https://github.com/01-ai">π GitHub</a> β’
<a href="https://discord.gg/hYUwWddeAu">πΎ Discord</a> β’
<a href="https://twitter.com/01ai_yi">π€ Twitter</a> β’
<a href="https://github.com/01-ai/Yi-1.5/issues/2">π¬ WeChat</a>
<br/>
<a href="https://arxiv.org/abs/2403.04652">π Paper</a> β’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">π FAQ</a> β’
<a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">π Learning Hub</a>
</p>
# Intro
Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples.
Compared with Yi, Yi-1.5 delivers stronger performance in coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension.
<div align="center">
Model | Context Length | Pre-trained Tokens
| :------------: | :------------: | :------------: |
| Yi-1.5 | 4K, 16K, 32K | 3.6T
</div>
# Models
- Chat models
<div align="center">
| Name | Download |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Yi-1.5-34B-Chat | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-34B-Chat-16K | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-9B-Chat | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-9B-Chat-16K | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-6B-Chat | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
</div>
- Base models
<div align="center">
| Name | Download |
| ---------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Yi-1.5-34B | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-34B-32K | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-9B | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-9B-32K | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
| Yi-1.5-6B | β’ [π€ Hugging Face](https://huggingface.co/collections/01-ai/yi-15-2024-05-663f3ecab5f815a3eaca7ca8) β’ [π€ ModelScope](https://www.modelscope.cn/organization/01ai) |
</div>
# Benchmarks
- Chat models
Yi-1.5-34B-Chat is on par with or excels beyond larger models in most benchmarks.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/KcsJ9Oc1VnEmfCDEJc5cd.png)
Yi-1.5-9B-Chat is the top performer among similarly sized open-source models.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/xf6pLg5jqRCwjlh6m3t6_.png)
- Base models
Yi-1.5-34B is on par with or excels beyond larger models in some benchmarks.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/BwU7QM-03dZvZzwdIE1xY.png)
Yi-1.5-9B is the top performer among similarly sized open-source models.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/656d9adce8bf55919aca7c3f/y-EYSYPT-3aWLJ0x8R94F.png)
# Quick Start
For getting up and running with Yi-1.5 models quickly, see [README](https://github.com/01-ai/Yi-1.5).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_01-ai__Yi-1.5-9B-Chat)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.56|
|AI2 Reasoning Challenge (25-Shot)|63.65|
|HellaSwag (10-Shot) |80.94|
|MMLU (5-Shot) |71.01|
|TruthfulQA (0-shot) |52.67|
|Winogrande (5-shot) |77.19|
|GSM8k (5-shot) |71.87|
|