You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Introduction

This model is trained based on the base_model:google-bert/bert-base-chinese and datasets:XiangPan/waimai_10k for sentiment analysis of reviews on a food delivery platform. It is designed to quickly identify negative reviews, allowing merchants to make targeted improvements efficiently.

How to use

from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

# 设备设置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载预训练的模型和分词器
model_name = "zzz16/Public-analysis"  # 确保该模型路径正确
tokenizer_name = "bert-base-chinese"
model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)

# 输入文本
text = "这个外卖平台的服务很差劲,配送慢,食物也冷了。"

# 使用分词器进行编码,将文本转化为模型输入的格式
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
inputs = {key: value.to(device) for key, value in inputs.items()}  # 迁移到设备上

# 使用模型进行预测
with torch.no_grad():
    outputs = model(**inputs)

# 获取模型的输出结果
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=-1)

# 输出预测的类别
print(f"预测类别: {predicted_class.item()}")

合作

我们在研发针对商家/企业/平台的外卖、舆情分析部署,主要针对商家/企业/平台进行舆情把控、情感分析,以进行针对性、快速应对和解决问题,如果您的公司想要体验或者是合作可以联系我们:3022656072@qq.com 邮件最好用中文!英文垃圾邮件太多,可能会回复不及时

Downloads last month
7
Safetensors
Model size
102M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for zzz16/Public-analysis

Finetuned
(173)
this model

Dataset used to train zzz16/Public-analysis