Built with Axolotl

See axolotl config

axolotl version: 0.8.0

base_model: NousResearch/Llama-3.2-1B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: teknium/GPT4-LLM-Cleaned
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/lora-out

adapter: lora
lora_model_dir:

sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: "<|end_of_text|>"

outputs/lora-out

This model is a fine-tuned version of NousResearch/Llama-3.2-1B on the teknium/GPT4-LLM-Cleaned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1169

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 12
  • total_eval_batch_size: 6
  • optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
1.353 0.0028 1 1.3922
1.2199 0.2521 91 1.1667
1.2732 0.5042 182 1.1309
1.2644 0.7562 273 1.1169

Framework versions

  • PEFT 0.15.0
  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
4
GGUF
Model size
11.3M params
Architecture
llama
Hardware compatibility
Log In to view the estimation

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for zurong/ft-llama-3-1b

Adapter
(304)
this model

Dataset used to train zurong/ft-llama-3-1b