wav2vec2-base-timit-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4659
  • Wer: 0.3080

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5787 0.87 500 1.7648 1.0305
0.8692 1.73 1000 0.5136 0.5103
0.4346 2.6 1500 0.4364 0.4515
0.31 3.46 2000 0.3889 0.4070
0.234 4.33 2500 0.4161 0.3863
0.2054 5.19 3000 0.3845 0.3722
0.165 6.06 3500 0.4035 0.3643
0.1436 6.92 4000 0.4090 0.3623
0.1381 7.79 4500 0.4007 0.3673
0.1175 8.65 5000 0.4588 0.3632
0.1052 9.52 5500 0.4441 0.3588
0.0988 10.38 6000 0.4133 0.3489
0.0877 11.25 6500 0.4758 0.3510
0.0856 12.11 7000 0.4454 0.3425
0.0731 12.98 7500 0.4252 0.3351
0.0712 13.84 8000 0.4163 0.3370
0.0711 14.71 8500 0.4166 0.3367
0.06 15.57 9000 0.4195 0.3347
0.0588 16.44 9500 0.4697 0.3367
0.0497 17.3 10000 0.4255 0.3314
0.0523 18.17 10500 0.4676 0.3307
0.0444 19.03 11000 0.4570 0.3244
0.0435 19.9 11500 0.4307 0.3243
0.0348 20.76 12000 0.4763 0.3245
0.036 21.63 12500 0.4635 0.3238
0.0347 22.49 13000 0.4602 0.3212
0.0333 23.36 13500 0.4472 0.3195
0.0311 24.22 14000 0.4449 0.3183
0.0294 25.09 14500 0.4631 0.3175
0.025 25.95 15000 0.4466 0.3164
0.023 26.82 15500 0.4581 0.3138
0.0216 27.68 16000 0.4665 0.3114
0.0198 28.55 16500 0.4590 0.3092
0.0181 29.41 17000 0.4659 0.3080

Framework versions

  • Transformers 4.20.0.dev0
  • Pytorch 1.11.0+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.