|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 10-vit-base-patch16-384-finetuned-spiderTraining20-500 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 10-vit-base-patch16-384-finetuned-spiderTraining20-500 |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3427 |
|
- Accuracy: 0.9029 |
|
- Precision: 0.9012 |
|
- Recall: 0.9032 |
|
- F1: 0.9009 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 25 |
|
- eval_batch_size: 25 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 100 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.6925 | 1.0 | 80 | 0.6605 | 0.7938 | 0.8012 | 0.7887 | 0.7869 | |
|
| 0.5869 | 2.0 | 160 | 0.5574 | 0.8298 | 0.8350 | 0.8254 | 0.8214 | |
|
| 0.4858 | 3.0 | 240 | 0.4335 | 0.8689 | 0.8692 | 0.8644 | 0.8644 | |
|
| 0.3921 | 4.0 | 320 | 0.4455 | 0.8739 | 0.8737 | 0.8722 | 0.8699 | |
|
| 0.2915 | 5.0 | 400 | 0.4707 | 0.8629 | 0.8708 | 0.8612 | 0.8571 | |
|
| 0.2727 | 6.0 | 480 | 0.4471 | 0.8819 | 0.8795 | 0.8808 | 0.8777 | |
|
| 0.216 | 7.0 | 560 | 0.3809 | 0.8899 | 0.8879 | 0.8874 | 0.8862 | |
|
| 0.1685 | 8.0 | 640 | 0.3760 | 0.8949 | 0.8938 | 0.8934 | 0.8915 | |
|
| 0.1292 | 9.0 | 720 | 0.3427 | 0.9049 | 0.9034 | 0.9032 | 0.9021 | |
|
| 0.1321 | 10.0 | 800 | 0.3427 | 0.9029 | 0.9012 | 0.9032 | 0.9009 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|