zkdeng's picture
Model save
936904c verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-384
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: 10-vit-base-patch16-384-finetuned-spiderTraining20-500
    results: []

10-vit-base-patch16-384-finetuned-spiderTraining20-500

This model is a fine-tuned version of google/vit-base-patch16-384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3427
  • Accuracy: 0.9029
  • Precision: 0.9012
  • Recall: 0.9032
  • F1: 0.9009

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 25
  • eval_batch_size: 25
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 100
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6925 1.0 80 0.6605 0.7938 0.8012 0.7887 0.7869
0.5869 2.0 160 0.5574 0.8298 0.8350 0.8254 0.8214
0.4858 3.0 240 0.4335 0.8689 0.8692 0.8644 0.8644
0.3921 4.0 320 0.4455 0.8739 0.8737 0.8722 0.8699
0.2915 5.0 400 0.4707 0.8629 0.8708 0.8612 0.8571
0.2727 6.0 480 0.4471 0.8819 0.8795 0.8808 0.8777
0.216 7.0 560 0.3809 0.8899 0.8879 0.8874 0.8862
0.1685 8.0 640 0.3760 0.8949 0.8938 0.8934 0.8915
0.1292 9.0 720 0.3427 0.9049 0.9034 0.9032 0.9021
0.1321 10.0 800 0.3427 0.9029 0.9012 0.9032 0.9009

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.3