--- license: apache-2.0 base_model: google/vit-base-patch16-384 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-vit-base-patch16-384-finetuned-spiderTraining20-500 results: [] --- # 10-vit-base-patch16-384-finetuned-spiderTraining20-500 This model is a fine-tuned version of [google/vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3427 - Accuracy: 0.9029 - Precision: 0.9012 - Recall: 0.9032 - F1: 0.9009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 25 - eval_batch_size: 25 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6925 | 1.0 | 80 | 0.6605 | 0.7938 | 0.8012 | 0.7887 | 0.7869 | | 0.5869 | 2.0 | 160 | 0.5574 | 0.8298 | 0.8350 | 0.8254 | 0.8214 | | 0.4858 | 3.0 | 240 | 0.4335 | 0.8689 | 0.8692 | 0.8644 | 0.8644 | | 0.3921 | 4.0 | 320 | 0.4455 | 0.8739 | 0.8737 | 0.8722 | 0.8699 | | 0.2915 | 5.0 | 400 | 0.4707 | 0.8629 | 0.8708 | 0.8612 | 0.8571 | | 0.2727 | 6.0 | 480 | 0.4471 | 0.8819 | 0.8795 | 0.8808 | 0.8777 | | 0.216 | 7.0 | 560 | 0.3809 | 0.8899 | 0.8879 | 0.8874 | 0.8862 | | 0.1685 | 8.0 | 640 | 0.3760 | 0.8949 | 0.8938 | 0.8934 | 0.8915 | | 0.1292 | 9.0 | 720 | 0.3427 | 0.9049 | 0.9034 | 0.9032 | 0.9021 | | 0.1321 | 10.0 | 800 | 0.3427 | 0.9029 | 0.9012 | 0.9032 | 0.9009 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3