File size: 5,638 Bytes
796d2eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
license: mit
pipeline_tag: text-generation
tags:
- ocean
- text-generation-inference
- oceangpt
language:
- en
datasets:
- zjunlp/OceanBench
---
<div align="center">
<img src="figs/logo.jpg" width="300px">
**OceanGPT: A Large Language Model for Ocean Science Tasks**
<p align="center">
<a href="https://github.com/zjunlp/OceanGPT">Project</a> •
<a href="https://arxiv.org/abs/2310.02031">Paper</a> •
<a href="https://huggingface.co/collections/zjunlp/oceangpt-664cc106358fdd9f09aa5157">Models</a> •
<a href="http://oceangpt.zjukg.cn/#model">Web</a> •
<a href="#overview">Overview</a> •
<a href="#quickstart">Quickstart</a> •
<a href="#citation">Citation</a>
</p>
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
![](https://img.shields.io/badge/PRs-Welcome-red)
</div>
OceanGPT-14B-v0.1 is based on Qwen1.5-14B and has been trained on a bilingual dataset in the ocean domain, covering both Chinese and English.
## Table of Contents
- <a href="#news">What's New</a>
- <a href="#overview">Overview</a>
- <a href="#quickstart">Quickstart</a>
- <a href="#models">Models</a>
- <a href="#citation">Citation</a>
## 🔔News
- **2024-07-04, we release OceanGPT-14B/2B-v0.1 and OceanGPT-7B-v0.2 based on Qwen and MiniCPM.**
- **2024-06-04, [OceanGPT](https://arxiv.org/abs/2310.02031) is accepted by ACL 2024. 🎉🎉**
- **2023-10-04, we release the paper "[OceanGPT: A Large Language Model for Ocean Science Tasks](https://arxiv.org/abs/2310.02031)" and release OceanGPT-7B-v0.1 based on LLaMA2.**
- **2023-05-01, we launch the OceanGPT project.**
---
## 🌟Overview
This is the OceanGPT project, which aims to build LLMs for ocean science tasks.
<div align="center">
<img src="figs/overview.png" width="60%">
</div>
## ⏩Quickstart
### Download the model
Download the model: [OceanGPT-14B-v0.1](https://huggingface.co/zjunlp/OceanGPT-14B-v0.1) or [
OceanGPT-7b-v0.2](https://huggingface.co/zjunlp/OceanGPT-7b-v0.2)
```shell
git lfs install
git clone https://huggingface.co/zjunlp/OceanGPT-14B-v0.1
```
or
```
huggingface-cli download --resume-download zjunlp/OceanGPT-14B-v0.1 --local-dir OceanGPT-14B-v0.1 --local-dir-use-symlinks False
```
### Inference
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
path = 'YOUR-MODEL-PATH'
model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(path)
prompt = "Which is the largest ocean in the world?"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## 📌Models
| Model Name | HuggingFace | WiseModel | ModelScope |
|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| OceanGPT-14B-v0.1 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-14B-v0.1" target="_blank">14B</a> |
| OceanGPT-7B-v0.2 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-7b-v0.2" target="_blank">7B</a> |
| OceanGPT-2B-v0.1 (based on MiniCPM) | <a href="https://huggingface.co/zjunlp/OceanGPT-2B-v0.1" target="_blank">2B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-2b-v0.1" target="_blank">2B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-2B-v0.1" target="_blank">2B</a> |
| OceanGPT-V | To be released | To be released | To be released |
---
## 🌻Acknowledgement
OceanGPT is trained based on the open-sourced large language models including [Qwen](https://huggingface.co/Qwen), [MiniCPM](https://huggingface.co/collections/openbmb/minicpm-2b-65d48bf958302b9fd25b698f), [LLaMA](https://huggingface.co/meta-llama). Thanks for their great contributions!
### 🚩Citation
Please cite the following paper if you use OceanGPT in your work.
```bibtex
@article{bi2023oceangpt,
title={OceanGPT: A Large Language Model for Ocean Science Tasks},
author={Bi, Zhen and Zhang, Ningyu and Xue, Yida and Ou, Yixin and Ji, Daxiong and Zheng, Guozhou and Chen, Huajun},
journal={arXiv preprint arXiv:2310.02031},
year={2023}
}
```
|