File size: 1,484 Bytes
709c543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6686b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses
```
gen_kwargs = {
        "max_new_tokens": 100,
        "top_k": 70,
        "top_p": 0.8,
        "do_sample": True,  
        "no_repeat_ngram_size": 2,
        "bos_token_id": tokenizer.bos_token_id,
        "eos_token_id": tokenizer.eos_token_id,
        "pad_token_id": tokenizer.pad_token_id,
        "temperature": 0.8,
        "use_cache": True,
        "repetition_penalty": 1.2,
        "num_return_sequences": 1
    }
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
ft = 'gpt-j-onlyk_v2'
tokenizer = AutoTokenizer.from_pretrained(ft)
model = AutoModelForCausalLM.from_pretrained(ft, torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to(device)

prepared = tokenizer.encode(inp, return_tensors='pt').to(model.device)
out = model.generate(input_ids=prepared, **gen_kwargs)
generated = tokenizer.decode(out[0])
```