File size: 80,813 Bytes
935a102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
2024/03/15 00:20:41 - patchstitcher - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) [GCC 12.3.0]
    CUDA available: True
    numpy_random_seed: 621
    GPU 0,1,2,3: NVIDIA A100-SXM4-80GB
    CUDA_HOME: /sw/rl9g/cuda/11.8/rl9_binary
    NVCC: Cuda compilation tools, release 11.8, V11.8.89
    GCC: gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)
    PyTorch: 2.1.2
    PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.8
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.7
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

    TorchVision: 0.16.2
    OpenCV: 4.8.1
    MMEngine: 0.10.2

Runtime environment:
    cudnn_benchmark: True
    mp_cfg: {'mp_start_method': 'forkserver'}
    dist_cfg: {'backend': 'nccl'}
    seed: 621
    Distributed launcher: pytorch
    Distributed training: True
    GPU number: 4
------------------------------------------------------------

2024/03/15 00:20:41 - patchstitcher - INFO - Config:
collect_input_args = [
    'image_lr',
    'crops_image_hr',
    'depth_gt',
    'crop_depths',
    'bboxs',
    'image_hr',
]
convert_syncbn = True
debug = False
env_cfg = dict(
    cudnn_benchmark=True,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='forkserver'))
find_unused_parameters = True
general_dataloader = dict(
    batch_size=1,
    dataset=dict(
        dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
    num_workers=2)
launcher = 'pytorch'
log_name = 'coarse_pretrain'
max_depth = 80
min_depth = 0.001
model = dict(
    coarse_branch=dict(
        attractor_alpha=1000,
        attractor_gamma=2,
        attractor_kind='mean',
        attractor_type='inv',
        aug=True,
        bin_centers_type='softplus',
        bin_embedding_dim=128,
        clip_grad=0.1,
        dataset='nyu',
        depth_anything=True,
        distributed=True,
        do_resize=False,
        force_keep_ar=True,
        freeze_midas_bn=True,
        gpu='NULL',
        img_size=[
            392,
            518,
        ],
        inverse_midas=False,
        log_images_every=0.1,
        max_depth=80,
        max_temp=50.0,
        max_translation=100,
        memory_efficient=True,
        midas_model_type='vits',
        min_depth=0.001,
        min_temp=0.0212,
        model='zoedepth',
        n_attractors=[
            16,
            8,
            4,
            1,
        ],
        n_bins=64,
        name='ZoeDepth',
        notes='',
        output_distribution='logbinomial',
        prefetch=False,
        pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
        print_losses=False,
        project='ZoeDepth',
        random_crop=False,
        random_translate=False,
        root='.',
        save_dir='',
        shared_dict='NULL',
        tags='',
        train_midas=True,
        translate_prob=0.2,
        type='DA-ZoeDepth',
        uid='NULL',
        use_amp=False,
        use_pretrained_midas=True,
        use_shared_dict=False,
        validate_every=0.25,
        version_name='v1',
        workers=16),
    fine_branch=dict(
        attractor_alpha=1000,
        attractor_gamma=2,
        attractor_kind='mean',
        attractor_type='inv',
        aug=True,
        bin_centers_type='softplus',
        bin_embedding_dim=128,
        clip_grad=0.1,
        dataset='nyu',
        depth_anything=True,
        distributed=True,
        do_resize=False,
        force_keep_ar=True,
        freeze_midas_bn=True,
        gpu='NULL',
        img_size=[
            392,
            518,
        ],
        inverse_midas=False,
        log_images_every=0.1,
        max_depth=80,
        max_temp=50.0,
        max_translation=100,
        memory_efficient=True,
        midas_model_type='vits',
        min_depth=0.001,
        min_temp=0.0212,
        model='zoedepth',
        n_attractors=[
            16,
            8,
            4,
            1,
        ],
        n_bins=64,
        name='ZoeDepth',
        notes='',
        output_distribution='logbinomial',
        prefetch=False,
        pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
        print_losses=False,
        project='ZoeDepth',
        random_crop=False,
        random_translate=False,
        root='.',
        save_dir='',
        shared_dict='NULL',
        tags='',
        train_midas=True,
        translate_prob=0.2,
        type='DA-ZoeDepth',
        uid='NULL',
        use_amp=False,
        use_pretrained_midas=True,
        use_shared_dict=False,
        validate_every=0.25,
        version_name='v1',
        workers=16),
    max_depth=80,
    min_depth=0.001,
    sigloss=dict(type='SILogLoss'),
    target='coarse',
    type='BaselinePretrain')
optim_wrapper = dict(
    clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
    optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
    paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
param_scheduler = dict(
    base_momentum=0.85,
    cycle_momentum=True,
    div_factor=1,
    final_div_factor=10000,
    max_momentum=0.95,
    pct_start=0.5,
    three_phase=False)
project = 'patchfusion'
tags = [
    'coarse',
    'da',
    'vits',
]
test_in_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='infer',
        split='./data/u4k/splits/test.txt',
        transform_cfg=dict(network_process_size=[
            384,
            512,
        ]),
        type='UnrealStereo4kDataset'),
    num_workers=2)
test_out_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='infer',
        split='./data/u4k/splits/test_out.txt',
        transform_cfg=dict(network_process_size=[
            384,
            512,
        ]),
        type='UnrealStereo4kDataset'),
    num_workers=2)
train_cfg = dict(
    eval_start=0,
    log_interval=100,
    max_epochs=24,
    save_checkpoint_interval=24,
    train_log_img_interval=100,
    val_interval=2,
    val_log_img_interval=50,
    val_type='epoch_base')
train_dataloader = dict(
    batch_size=4,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='train',
        resize_mode='depth-anything',
        split='./data/u4k/splits/train.txt',
        transform_cfg=dict(
            degree=1.0, network_process_size=[
                392,
                518,
            ], random_crop=True),
        type='UnrealStereo4kDataset'),
    num_workers=4)
val_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='infer',
        resize_mode='depth-anything',
        split='./data/u4k/splits/val.txt',
        transform_cfg=dict(degree=1.0, network_process_size=[
            392,
            518,
        ]),
        type='UnrealStereo4kDataset'),
    num_workers=2)
work_dir = './work_dir/depthanything_vits_u4k/coarse_pretrain'
zoe_depth_config = dict(
    attractor_alpha=1000,
    attractor_gamma=2,
    attractor_kind='mean',
    attractor_type='inv',
    aug=True,
    bin_centers_type='softplus',
    bin_embedding_dim=128,
    clip_grad=0.1,
    dataset='nyu',
    depth_anything=True,
    distributed=True,
    do_resize=False,
    force_keep_ar=True,
    freeze_midas_bn=True,
    gpu='NULL',
    img_size=[
        392,
        518,
    ],
    inverse_midas=False,
    log_images_every=0.1,
    max_depth=80,
    max_temp=50.0,
    max_translation=100,
    memory_efficient=True,
    midas_model_type='vits',
    min_depth=0.001,
    min_temp=0.0212,
    model='zoedepth',
    n_attractors=[
        16,
        8,
        4,
        1,
    ],
    n_bins=64,
    name='ZoeDepth',
    notes='',
    output_distribution='logbinomial',
    prefetch=False,
    pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
    print_losses=False,
    project='ZoeDepth',
    random_crop=False,
    random_translate=False,
    root='.',
    save_dir='',
    shared_dict='NULL',
    tags='',
    train_midas=True,
    translate_prob=0.2,
    type='DA-ZoeDepth',
    uid='NULL',
    use_amp=False,
    use_pretrained_midas=True,
    use_shared_dict=False,
    validate_every=0.25,
    version_name='v1',
    workers=16)

2024/03/15 00:20:41 - patchstitcher - INFO - Loading deepnet from local::./work_dir/DepthAnything_vits.pt
2024/03/15 00:20:41 - patchstitcher - INFO - Current zoedepth.core.prep.resizer is <class 'torch.nn.modules.linear.Identity'>
2024/03/15 00:20:42 - patchstitcher - INFO - DistributedDataParallel(
  (module): BaselinePretrain(
    (coarse_branch): ZoeDepth(
      (core): DepthAnythingCore(
        (core): DPT_DINOv2(
          (pretrained): DinoVisionTransformer(
            (patch_embed): PatchEmbed(
              (proj): Conv2d(3, 384, kernel_size=(14, 14), stride=(14, 14))
              (norm): Identity()
            )
            (blocks): ModuleList(
              (0-11): 12 x NestedTensorBlock(
                (norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
                (attn): MemEffAttention(
                  (qkv): Linear(in_features=384, out_features=1152, bias=True)
                  (attn_drop): Dropout(p=0.0, inplace=False)
                  (proj): Linear(in_features=384, out_features=384, bias=True)
                  (proj_drop): Dropout(p=0.0, inplace=False)
                )
                (ls1): LayerScale()
                (drop_path1): Identity()
                (norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
                (mlp): Mlp(
                  (fc1): Linear(in_features=384, out_features=1536, bias=True)
                  (act): GELU(approximate='none')
                  (fc2): Linear(in_features=1536, out_features=384, bias=True)
                  (drop): Dropout(p=0.0, inplace=False)
                )
                (ls2): LayerScale()
                (drop_path2): Identity()
              )
            )
            (norm): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
            (head): Identity()
          )
          (depth_head): DPTHead(
            (projects): ModuleList(
              (0): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1))
              (1): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))
              (2): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))
              (3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))
            )
            (resize_layers): ModuleList(
              (0): ConvTranspose2d(48, 48, kernel_size=(4, 4), stride=(4, 4))
              (1): ConvTranspose2d(96, 96, kernel_size=(2, 2), stride=(2, 2))
              (2): Identity()
              (3): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
            )
            (scratch): Module(
              (layer1_rn): Conv2d(48, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (layer2_rn): Conv2d(96, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (layer3_rn): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (layer4_rn): Conv2d(384, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (refinenet1): FeatureFusionBlock(
                (out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (refinenet2): FeatureFusionBlock(
                (out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (refinenet3): FeatureFusionBlock(
                (out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (refinenet4): FeatureFusionBlock(
                (out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (output_conv1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (output_conv2): Sequential(
                (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (1): ReLU(inplace=True)
                (2): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
                (3): ReLU(inplace=True)
                (4): Identity()
              )
            )
          )
        )
      )
      (conv2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
      (seed_bin_regressor): SeedBinRegressorUnnormed(
        (_net): Sequential(
          (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
          (1): ReLU(inplace=True)
          (2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
          (3): Softplus(beta=1, threshold=20)
        )
      )
      (seed_projector): Projector(
        (_net): Sequential(
          (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
          (1): ReLU(inplace=True)
          (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (projectors): ModuleList(
        (0-3): 4 x Projector(
          (_net): Sequential(
            (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
          )
        )
      )
      (attractors): ModuleList(
        (0): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
        (1): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
        (2): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
        (3): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
      )
      (conditional_log_binomial): ConditionalLogBinomial(
        (log_binomial_transform): LogBinomial()
        (mlp): Sequential(
          (0): Conv2d(161, 80, kernel_size=(1, 1), stride=(1, 1))
          (1): GELU(approximate='none')
          (2): Conv2d(80, 4, kernel_size=(1, 1), stride=(1, 1))
          (3): Softplus(beta=1, threshold=20)
        )
      )
    )
    (sigloss): SILogLoss()
  )
)
2024/03/15 00:20:47 - patchstitcher - INFO - successfully init trainer
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.cls_token
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.pos_embed
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.mask_token
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.patch_embed.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.patch_embed.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.qkv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.qkv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.proj.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.proj.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.ls1.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.ls2.gamma
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.norm.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.norm.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.3.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.3.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.3.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.3.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer1_rn.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer2_rn.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer3_rn.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer4_rn.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.out_conv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.out_conv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.out_conv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.out_conv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.out_conv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.out_conv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.out_conv.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.out_conv.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv1.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv1.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conv2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conv2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.2.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.0.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.0.bias
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.2.weight
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.2.bias
2024/03/15 00:23:05 - patchstitcher - INFO - Epoch: [01/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.218886375427246 - coarse_loss: 2.218886375427246
2024/03/15 00:24:52 - patchstitcher - INFO - Epoch: [01/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.0132031440734863 - coarse_loss: 2.0132031440734863
2024/03/15 00:26:41 - patchstitcher - INFO - Epoch: [01/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.1340489387512207 - coarse_loss: 2.1340489387512207
2024/03/15 00:28:31 - patchstitcher - INFO - Epoch: [01/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.68356192111969 - coarse_loss: 1.68356192111969
2024/03/15 00:31:46 - patchstitcher - INFO - Epoch: [02/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1240144968032837 - coarse_loss: 1.1240144968032837
2024/03/15 00:33:37 - patchstitcher - INFO - Epoch: [02/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.2552540302276611 - coarse_loss: 1.2552540302276611
2024/03/15 00:35:27 - patchstitcher - INFO - Epoch: [02/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3931670188903809 - coarse_loss: 1.3931670188903809
2024/03/15 00:37:17 - patchstitcher - INFO - Epoch: [02/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4315416812896729 - coarse_loss: 1.4315416812896729
2024/03/15 00:38:56 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |   rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| 0.9222131 | 0.9841732 | 0.9937032 | 0.0942684 | 1.901311 | 0.0392215 | 0.1319014 | 11.5870857 | 0.3169146 | 1.4523976 |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 00:40:53 - patchstitcher - INFO - Epoch: [03/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3891286849975586 - coarse_loss: 1.3891286849975586
2024/03/15 00:42:45 - patchstitcher - INFO - Epoch: [03/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.3853542804718018 - coarse_loss: 1.3853542804718018
2024/03/15 00:44:31 - patchstitcher - INFO - Epoch: [03/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6085820198059082 - coarse_loss: 1.6085820198059082
2024/03/15 00:46:24 - patchstitcher - INFO - Epoch: [03/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2743269205093384 - coarse_loss: 1.2743269205093384
2024/03/15 00:49:33 - patchstitcher - INFO - Epoch: [04/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4644969701766968 - coarse_loss: 1.4644969701766968
2024/03/15 00:51:20 - patchstitcher - INFO - Epoch: [04/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.040415644645691 - coarse_loss: 1.040415644645691
2024/03/15 00:53:07 - patchstitcher - INFO - Epoch: [04/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.2523736953735352 - coarse_loss: 1.2523736953735352
2024/03/15 00:54:57 - patchstitcher - INFO - Epoch: [04/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7893640995025635 - coarse_loss: 0.7893640995025635
2024/03/15 00:56:31 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |   rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| 0.9466366 | 0.9857079 | 0.9944696 | 0.0784504 | 1.723246 | 0.0331783 | 0.1166779 | 10.4672395 | 0.2658952 | 1.2480133 |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 00:58:25 - patchstitcher - INFO - Epoch: [05/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8934182524681091 - coarse_loss: 0.8934182524681091
2024/03/15 01:00:10 - patchstitcher - INFO - Epoch: [05/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0365135669708252 - coarse_loss: 1.0365135669708252
2024/03/15 01:02:00 - patchstitcher - INFO - Epoch: [05/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0158889293670654 - coarse_loss: 1.0158889293670654
2024/03/15 01:03:50 - patchstitcher - INFO - Epoch: [05/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7366129159927368 - coarse_loss: 0.7366129159927368
2024/03/15 01:07:04 - patchstitcher - INFO - Epoch: [06/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4556183815002441 - coarse_loss: 1.4556183815002441
2024/03/15 01:08:51 - patchstitcher - INFO - Epoch: [06/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.093213677406311 - coarse_loss: 1.093213677406311
2024/03/15 01:10:45 - patchstitcher - INFO - Epoch: [06/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8329901099205017 - coarse_loss: 0.8329901099205017
2024/03/15 01:12:32 - patchstitcher - INFO - Epoch: [06/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.8255199193954468 - coarse_loss: 0.8255199193954468
2024/03/15 01:14:05 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9492006 | 0.9876058 | 0.9947174 | 0.0765434 | 1.6623389 | 0.0336977 | 0.1157899 | 10.168448 | 0.2274059 | 1.1601292 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 01:16:01 - patchstitcher - INFO - Epoch: [07/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9320656061172485 - coarse_loss: 0.9320656061172485
2024/03/15 01:17:44 - patchstitcher - INFO - Epoch: [07/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.3558683395385742 - coarse_loss: 1.3558683395385742
2024/03/15 01:19:36 - patchstitcher - INFO - Epoch: [07/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.1851251125335693 - coarse_loss: 1.1851251125335693
2024/03/15 01:21:28 - patchstitcher - INFO - Epoch: [07/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7694360613822937 - coarse_loss: 0.7694360613822937
2024/03/15 01:24:39 - patchstitcher - INFO - Epoch: [08/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9268642067909241 - coarse_loss: 0.9268642067909241
2024/03/15 01:26:28 - patchstitcher - INFO - Epoch: [08/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0070387125015259 - coarse_loss: 1.0070387125015259
2024/03/15 01:28:17 - patchstitcher - INFO - Epoch: [08/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3363308906555176 - coarse_loss: 1.3363308906555176
2024/03/15 01:30:03 - patchstitcher - INFO - Epoch: [08/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.549015998840332 - coarse_loss: 1.549015998840332
2024/03/15 01:31:38 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |  sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+
| 0.9580896 | 0.9882235 | 0.9949475 | 0.0697348 | 1.6023046 | 0.0295156 | 0.1067427 | 9.6755001 | 0.224005 | 1.1545794 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+
2024/03/15 01:33:33 - patchstitcher - INFO - Epoch: [09/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2725939750671387 - coarse_loss: 1.2725939750671387
2024/03/15 01:35:25 - patchstitcher - INFO - Epoch: [09/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.8319188356399536 - coarse_loss: 1.8319188356399536
2024/03/15 01:37:16 - patchstitcher - INFO - Epoch: [09/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9146164655685425 - coarse_loss: 0.9146164655685425
2024/03/15 01:39:08 - patchstitcher - INFO - Epoch: [09/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9933633208274841 - coarse_loss: 0.9933633208274841
2024/03/15 01:42:21 - patchstitcher - INFO - Epoch: [10/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.531670331954956 - coarse_loss: 0.531670331954956
2024/03/15 01:44:13 - patchstitcher - INFO - Epoch: [10/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.98005211353302 - coarse_loss: 0.98005211353302
2024/03/15 01:46:08 - patchstitcher - INFO - Epoch: [10/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.562972068786621 - coarse_loss: 1.562972068786621
2024/03/15 01:48:00 - patchstitcher - INFO - Epoch: [10/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0578055381774902 - coarse_loss: 1.0578055381774902
2024/03/15 01:49:39 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+----------+-----------+--------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |  log_10  |  rmse_log | silog  |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+----------+-----------+--------+-----------+-----------+
| 0.9573399 | 0.9884624 | 0.9949526 | 0.0727779 | 1.5619678 | 0.030998 | 0.1089102 | 9.5524 | 0.2075647 | 1.1259904 |
+-----------+-----------+-----------+-----------+-----------+----------+-----------+--------+-----------+-----------+
2024/03/15 01:51:35 - patchstitcher - INFO - Epoch: [11/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9536416530609131 - coarse_loss: 0.9536416530609131
2024/03/15 01:53:33 - patchstitcher - INFO - Epoch: [11/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.061272382736206 - coarse_loss: 1.061272382736206
2024/03/15 01:55:27 - patchstitcher - INFO - Epoch: [11/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.403846263885498 - coarse_loss: 1.403846263885498
2024/03/15 01:57:19 - patchstitcher - INFO - Epoch: [11/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6634379625320435 - coarse_loss: 0.6634379625320435
2024/03/15 02:00:39 - patchstitcher - INFO - Epoch: [12/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7105982303619385 - coarse_loss: 0.7105982303619385
2024/03/15 02:02:34 - patchstitcher - INFO - Epoch: [12/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8706010580062866 - coarse_loss: 0.8706010580062866
2024/03/15 02:04:29 - patchstitcher - INFO - Epoch: [12/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.013525366783142 - coarse_loss: 1.013525366783142
2024/03/15 02:06:17 - patchstitcher - INFO - Epoch: [12/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9357657432556152 - coarse_loss: 0.9357657432556152
2024/03/15 02:07:50 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9572283 | 0.9886936 | 0.9950871 | 0.0731142 | 1.5668887 | 0.0308406 | 0.1077591 | 9.5263897 | 0.2176418 | 1.1755943 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 02:09:47 - patchstitcher - INFO - Epoch: [13/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4000838994979858 - coarse_loss: 1.4000838994979858
2024/03/15 02:11:41 - patchstitcher - INFO - Epoch: [13/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.147301435470581 - coarse_loss: 1.147301435470581
2024/03/15 02:13:39 - patchstitcher - INFO - Epoch: [13/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9417784214019775 - coarse_loss: 0.9417784214019775
2024/03/15 02:15:36 - patchstitcher - INFO - Epoch: [13/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.898872971534729 - coarse_loss: 0.898872971534729
2024/03/15 02:18:53 - patchstitcher - INFO - Epoch: [14/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6218137741088867 - coarse_loss: 0.6218137741088867
2024/03/15 02:20:49 - patchstitcher - INFO - Epoch: [14/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9591147303581238 - coarse_loss: 0.9591147303581238
2024/03/15 02:22:42 - patchstitcher - INFO - Epoch: [14/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7330798506736755 - coarse_loss: 0.7330798506736755
2024/03/15 02:24:37 - patchstitcher - INFO - Epoch: [14/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.671249508857727 - coarse_loss: 0.671249508857727
2024/03/15 02:26:12 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9656246 | 0.9891472 | 0.9951051 | 0.0614303 | 1.5103214 | 0.0264747 | 0.1001097 | 9.4011921 | 0.1946697 | 1.0991172 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 02:28:10 - patchstitcher - INFO - Epoch: [15/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7798411846160889 - coarse_loss: 0.7798411846160889
2024/03/15 02:30:02 - patchstitcher - INFO - Epoch: [15/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9757544994354248 - coarse_loss: 0.9757544994354248
2024/03/15 02:31:49 - patchstitcher - INFO - Epoch: [15/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.1485944986343384 - coarse_loss: 1.1485944986343384
2024/03/15 02:33:42 - patchstitcher - INFO - Epoch: [15/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.8730670809745789 - coarse_loss: 0.8730670809745789
2024/03/15 02:36:57 - patchstitcher - INFO - Epoch: [16/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0859500169754028 - coarse_loss: 1.0859500169754028
2024/03/15 02:38:46 - patchstitcher - INFO - Epoch: [16/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9123729467391968 - coarse_loss: 0.9123729467391968
2024/03/15 02:40:36 - patchstitcher - INFO - Epoch: [16/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0700657367706299 - coarse_loss: 1.0700657367706299
2024/03/15 02:42:24 - patchstitcher - INFO - Epoch: [16/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.8393980264663696 - coarse_loss: 1.8393980264663696
2024/03/15 02:43:58 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |   rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+
| 0.9678091 | 0.9892931 | 0.9952321 | 0.0607629 | 1.488932 | 0.0257705 | 0.0981663 | 9.0934609 | 0.1966839 | 1.0878515 |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 02:45:51 - patchstitcher - INFO - Epoch: [17/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7053128480911255 - coarse_loss: 0.7053128480911255
2024/03/15 02:47:43 - patchstitcher - INFO - Epoch: [17/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9886703491210938 - coarse_loss: 0.9886703491210938
2024/03/15 02:49:32 - patchstitcher - INFO - Epoch: [17/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.180053949356079 - coarse_loss: 1.180053949356079
2024/03/15 02:51:22 - patchstitcher - INFO - Epoch: [17/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.316230297088623 - coarse_loss: 1.316230297088623
2024/03/15 02:54:39 - patchstitcher - INFO - Epoch: [18/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7665231227874756 - coarse_loss: 0.7665231227874756
2024/03/15 02:56:30 - patchstitcher - INFO - Epoch: [18/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6590834856033325 - coarse_loss: 0.6590834856033325
2024/03/15 02:58:17 - patchstitcher - INFO - Epoch: [18/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9268083572387695 - coarse_loss: 0.9268083572387695
2024/03/15 03:00:07 - patchstitcher - INFO - Epoch: [18/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.255874752998352 - coarse_loss: 1.255874752998352
2024/03/15 03:01:42 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9691702 | 0.9894969 | 0.9952754 | 0.0559551 | 1.4743834 | 0.0240017 | 0.0943829 | 8.8561864 | 0.1819411 | 1.0395958 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 03:03:35 - patchstitcher - INFO - Epoch: [19/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6205350756645203 - coarse_loss: 0.6205350756645203
2024/03/15 03:05:29 - patchstitcher - INFO - Epoch: [19/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6529569625854492 - coarse_loss: 0.6529569625854492
2024/03/15 03:07:18 - patchstitcher - INFO - Epoch: [19/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8907508850097656 - coarse_loss: 0.8907508850097656
2024/03/15 03:09:13 - patchstitcher - INFO - Epoch: [19/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5823774337768555 - coarse_loss: 0.5823774337768555
2024/03/15 03:12:22 - patchstitcher - INFO - Epoch: [20/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3379265069961548 - coarse_loss: 1.3379265069961548
2024/03/15 03:14:13 - patchstitcher - INFO - Epoch: [20/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.615516185760498 - coarse_loss: 0.615516185760498
2024/03/15 03:16:04 - patchstitcher - INFO - Epoch: [20/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5864847302436829 - coarse_loss: 0.5864847302436829
2024/03/15 03:17:54 - patchstitcher - INFO - Epoch: [20/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9669459462165833 - coarse_loss: 0.9669459462165833
2024/03/15 03:19:29 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9697102 | 0.9895742 | 0.9953449 | 0.0539071 | 1.4497501 | 0.0229091 | 0.0925752 | 8.7784555 | 0.1802817 | 1.0580258 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 03:21:25 - patchstitcher - INFO - Epoch: [21/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9557666778564453 - coarse_loss: 0.9557666778564453
2024/03/15 03:23:15 - patchstitcher - INFO - Epoch: [21/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6958411931991577 - coarse_loss: 0.6958411931991577
2024/03/15 03:25:01 - patchstitcher - INFO - Epoch: [21/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5607629418373108 - coarse_loss: 0.5607629418373108
2024/03/15 03:26:54 - patchstitcher - INFO - Epoch: [21/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.8118071556091309 - coarse_loss: 1.8118071556091309
2024/03/15 03:30:05 - patchstitcher - INFO - Epoch: [22/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0183720588684082 - coarse_loss: 1.0183720588684082
2024/03/15 03:31:53 - patchstitcher - INFO - Epoch: [22/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0083253383636475 - coarse_loss: 1.0083253383636475
2024/03/15 03:33:45 - patchstitcher - INFO - Epoch: [22/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5852430462837219 - coarse_loss: 0.5852430462837219
2024/03/15 03:35:35 - patchstitcher - INFO - Epoch: [22/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.8135958909988403 - coarse_loss: 0.8135958909988403
2024/03/15 03:37:10 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9699838 | 0.9896694 | 0.9953757 | 0.0526183 | 1.4463599 | 0.0224501 | 0.0915034 | 8.7251583 | 0.1771403 | 1.0479052 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 03:39:04 - patchstitcher - INFO - Epoch: [23/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6198912262916565 - coarse_loss: 0.6198912262916565
2024/03/15 03:40:57 - patchstitcher - INFO - Epoch: [23/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.1995759010314941 - coarse_loss: 1.1995759010314941
2024/03/15 03:42:47 - patchstitcher - INFO - Epoch: [23/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.7696393728256226 - coarse_loss: 1.7696393728256226
2024/03/15 03:44:34 - patchstitcher - INFO - Epoch: [23/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4660639762878418 - coarse_loss: 1.4660639762878418
2024/03/15 03:47:48 - patchstitcher - INFO - Epoch: [24/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9167467355728149 - coarse_loss: 0.9167467355728149
2024/03/15 03:49:40 - patchstitcher - INFO - Epoch: [24/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6638955473899841 - coarse_loss: 0.6638955473899841
2024/03/15 03:51:31 - patchstitcher - INFO - Epoch: [24/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.4969237446784973 - coarse_loss: 0.4969237446784973
2024/03/15 03:53:18 - patchstitcher - INFO - Epoch: [24/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5059656500816345 - coarse_loss: 0.5059656500816345
2024/03/15 03:54:52 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |   see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
| 0.9701259 | 0.9896677 | 0.9953767 | 0.0521426 | 1.4457442 | 0.0222779 | 0.0914182 | 8.7319618 | 0.1776046 | 1.046505 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
2024/03/15 03:54:52 - patchstitcher - INFO - Saving ckp, but use the inner get_save_dict fuction to get model_dict
2024/03/15 03:54:52 - patchstitcher - INFO - For saving space. Would you like to save base model several times? :>
2024/03/15 03:54:52 - patchstitcher - INFO - save checkpoint_24.pth at ./work_dir/depthanything_vits_u4k/coarse_pretrain