Upload 40 files
Browse files- DepthAnything_vitb.pt +3 -0
- DepthAnything_vitl.pt +3 -0
- DepthAnything_vits.pt +3 -0
- ZoeDepthv1.pt +3 -0
- depthanything_vitb_u4k/coarse_pretrain/20240315_095516.log +1024 -0
- depthanything_vitb_u4k/coarse_pretrain/checkpoint_24.pth +3 -0
- depthanything_vitb_u4k/coarse_pretrain/config.py +310 -0
- depthanything_vitb_u4k/fine_pretrain/20240315_153036.log +1028 -0
- depthanything_vitb_u4k/fine_pretrain/checkpoint_24.pth +3 -0
- depthanything_vitb_u4k/fine_pretrain/config.py +314 -0
- depthanything_vitb_u4k/patchfusion/20240315_193032.log +0 -0
- depthanything_vitb_u4k/patchfusion/checkpoint_16.pth +3 -0
- depthanything_vitb_u4k/patchfusion/config.py +341 -0
- depthanything_vitl_u4k/coarse_pretrain/20240315_102957.log +0 -0
- depthanything_vitl_u4k/coarse_pretrain/checkpoint_24.pth +3 -0
- depthanything_vitl_u4k/coarse_pretrain/config.py +310 -0
- depthanything_vitl_u4k/fine_pretrain/20240315_140837.log +0 -0
- depthanything_vitl_u4k/fine_pretrain/checkpoint_24.pth +3 -0
- depthanything_vitl_u4k/fine_pretrain/config.py +314 -0
- depthanything_vitl_u4k/patchfusion/20240315_175237.log +0 -0
- depthanything_vitl_u4k/patchfusion/checkpoint_16.pth +3 -0
- depthanything_vitl_u4k/patchfusion/config.py +347 -0
- depthanything_vits_u4k/coarse_pretrain/20240315_002030.log +1024 -0
- depthanything_vits_u4k/coarse_pretrain/checkpoint_24.pth +3 -0
- depthanything_vits_u4k/coarse_pretrain/config.py +310 -0
- depthanything_vits_u4k/fine_pretrain/20240315_035516.log +1028 -0
- depthanything_vits_u4k/fine_pretrain/checkpoint_24.pth +3 -0
- depthanything_vits_u4k/fine_pretrain/config.py +314 -0
- depthanything_vits_u4k/patchfusion/20240315_072915.log +0 -0
- depthanything_vits_u4k/patchfusion/checkpoint_16.pth +3 -0
- depthanything_vits_u4k/patchfusion/config.py +341 -0
- zoedepth_u4k/coarse_pretrain/20240313_154004.log +0 -0
- zoedepth_u4k/coarse_pretrain/checkpoint_24.pth +3 -0
- zoedepth_u4k/coarse_pretrain/config.py +307 -0
- zoedepth_u4k/fine_pretrain/20240313_205222.log +0 -0
- zoedepth_u4k/fine_pretrain/checkpoint_24.pth +3 -0
- zoedepth_u4k/fine_pretrain/config.py +307 -0
- zoedepth_u4k/patchfusion/20240314_171340.log +0 -0
- zoedepth_u4k/patchfusion/checkpoint_16.pth +3 -0
- zoedepth_u4k/patchfusion/config.py +305 -0
DepthAnything_vitb.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:851ed48c54d3bc91be762169662ae6df3b522d741a326d8d0cfad90deb0dd893
|
3 |
+
size 391269536
|
DepthAnything_vitl.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09e3c568c99c6437a53ccdbb59b3d2ec7a918ef5f74a775dfca6a14ee3ab3f57
|
3 |
+
size 1343379696
|
DepthAnything_vits.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecc1f60f6e66ed39c7a3bb6395f1e5fd649f95505833d82903ce79df4eb1a42a
|
3 |
+
size 100247904
|
ZoeDepthv1.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b6f2a136ea7dfe1368638b8cdee5d01b687158d9e08e7c4ee0bc21613f94dc4
|
3 |
+
size 1443428517
|
depthanything_vitb_u4k/coarse_pretrain/20240315_095516.log
ADDED
@@ -0,0 +1,1024 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024/03/15 09:55:26 - patchstitcher - INFO -
|
2 |
+
------------------------------------------------------------
|
3 |
+
System environment:
|
4 |
+
sys.platform: linux
|
5 |
+
Python: 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) [GCC 12.3.0]
|
6 |
+
CUDA available: True
|
7 |
+
numpy_random_seed: 621
|
8 |
+
GPU 0,1,2,3: NVIDIA A100-SXM4-80GB
|
9 |
+
CUDA_HOME: /sw/rl9g/cuda/11.8/rl9_binary
|
10 |
+
NVCC: Cuda compilation tools, release 11.8, V11.8.89
|
11 |
+
GCC: gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)
|
12 |
+
PyTorch: 2.1.2
|
13 |
+
PyTorch compiling details: PyTorch built with:
|
14 |
+
- GCC 9.3
|
15 |
+
- C++ Version: 201703
|
16 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
|
17 |
+
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
|
18 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
19 |
+
- LAPACK is enabled (usually provided by MKL)
|
20 |
+
- NNPACK is enabled
|
21 |
+
- CPU capability usage: AVX2
|
22 |
+
- CUDA Runtime 11.8
|
23 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
|
24 |
+
- CuDNN 8.7
|
25 |
+
- Magma 2.6.1
|
26 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
27 |
+
|
28 |
+
TorchVision: 0.16.2
|
29 |
+
OpenCV: 4.8.1
|
30 |
+
MMEngine: 0.10.2
|
31 |
+
|
32 |
+
Runtime environment:
|
33 |
+
cudnn_benchmark: True
|
34 |
+
mp_cfg: {'mp_start_method': 'forkserver'}
|
35 |
+
dist_cfg: {'backend': 'nccl'}
|
36 |
+
seed: 621
|
37 |
+
Distributed launcher: pytorch
|
38 |
+
Distributed training: True
|
39 |
+
GPU number: 4
|
40 |
+
------------------------------------------------------------
|
41 |
+
|
42 |
+
2024/03/15 09:55:26 - patchstitcher - INFO - Config:
|
43 |
+
collect_input_args = [
|
44 |
+
'image_lr',
|
45 |
+
'crops_image_hr',
|
46 |
+
'depth_gt',
|
47 |
+
'crop_depths',
|
48 |
+
'bboxs',
|
49 |
+
'image_hr',
|
50 |
+
]
|
51 |
+
convert_syncbn = True
|
52 |
+
debug = False
|
53 |
+
env_cfg = dict(
|
54 |
+
cudnn_benchmark=True,
|
55 |
+
dist_cfg=dict(backend='nccl'),
|
56 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
57 |
+
find_unused_parameters = True
|
58 |
+
general_dataloader = dict(
|
59 |
+
batch_size=1,
|
60 |
+
dataset=dict(
|
61 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
62 |
+
num_workers=2)
|
63 |
+
launcher = 'pytorch'
|
64 |
+
log_name = 'coarse_pretrain'
|
65 |
+
max_depth = 80
|
66 |
+
min_depth = 0.001
|
67 |
+
model = dict(
|
68 |
+
coarse_branch=dict(
|
69 |
+
attractor_alpha=1000,
|
70 |
+
attractor_gamma=2,
|
71 |
+
attractor_kind='mean',
|
72 |
+
attractor_type='inv',
|
73 |
+
aug=True,
|
74 |
+
bin_centers_type='softplus',
|
75 |
+
bin_embedding_dim=128,
|
76 |
+
clip_grad=0.1,
|
77 |
+
dataset='nyu',
|
78 |
+
depth_anything=True,
|
79 |
+
distributed=True,
|
80 |
+
do_resize=False,
|
81 |
+
force_keep_ar=True,
|
82 |
+
freeze_midas_bn=True,
|
83 |
+
gpu='NULL',
|
84 |
+
img_size=[
|
85 |
+
392,
|
86 |
+
518,
|
87 |
+
],
|
88 |
+
inverse_midas=False,
|
89 |
+
log_images_every=0.1,
|
90 |
+
max_depth=80,
|
91 |
+
max_temp=50.0,
|
92 |
+
max_translation=100,
|
93 |
+
memory_efficient=True,
|
94 |
+
midas_model_type='vitb',
|
95 |
+
min_depth=0.001,
|
96 |
+
min_temp=0.0212,
|
97 |
+
model='zoedepth',
|
98 |
+
n_attractors=[
|
99 |
+
16,
|
100 |
+
8,
|
101 |
+
4,
|
102 |
+
1,
|
103 |
+
],
|
104 |
+
n_bins=64,
|
105 |
+
name='ZoeDepth',
|
106 |
+
notes='',
|
107 |
+
output_distribution='logbinomial',
|
108 |
+
prefetch=False,
|
109 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
110 |
+
print_losses=False,
|
111 |
+
project='ZoeDepth',
|
112 |
+
random_crop=False,
|
113 |
+
random_translate=False,
|
114 |
+
root='.',
|
115 |
+
save_dir='',
|
116 |
+
shared_dict='NULL',
|
117 |
+
tags='',
|
118 |
+
train_midas=True,
|
119 |
+
translate_prob=0.2,
|
120 |
+
type='DA-ZoeDepth',
|
121 |
+
uid='NULL',
|
122 |
+
use_amp=False,
|
123 |
+
use_pretrained_midas=True,
|
124 |
+
use_shared_dict=False,
|
125 |
+
validate_every=0.25,
|
126 |
+
version_name='v1',
|
127 |
+
workers=16),
|
128 |
+
fine_branch=dict(
|
129 |
+
attractor_alpha=1000,
|
130 |
+
attractor_gamma=2,
|
131 |
+
attractor_kind='mean',
|
132 |
+
attractor_type='inv',
|
133 |
+
aug=True,
|
134 |
+
bin_centers_type='softplus',
|
135 |
+
bin_embedding_dim=128,
|
136 |
+
clip_grad=0.1,
|
137 |
+
dataset='nyu',
|
138 |
+
depth_anything=True,
|
139 |
+
distributed=True,
|
140 |
+
do_resize=False,
|
141 |
+
force_keep_ar=True,
|
142 |
+
freeze_midas_bn=True,
|
143 |
+
gpu='NULL',
|
144 |
+
img_size=[
|
145 |
+
392,
|
146 |
+
518,
|
147 |
+
],
|
148 |
+
inverse_midas=False,
|
149 |
+
log_images_every=0.1,
|
150 |
+
max_depth=80,
|
151 |
+
max_temp=50.0,
|
152 |
+
max_translation=100,
|
153 |
+
memory_efficient=True,
|
154 |
+
midas_model_type='vitb',
|
155 |
+
min_depth=0.001,
|
156 |
+
min_temp=0.0212,
|
157 |
+
model='zoedepth',
|
158 |
+
n_attractors=[
|
159 |
+
16,
|
160 |
+
8,
|
161 |
+
4,
|
162 |
+
1,
|
163 |
+
],
|
164 |
+
n_bins=64,
|
165 |
+
name='ZoeDepth',
|
166 |
+
notes='',
|
167 |
+
output_distribution='logbinomial',
|
168 |
+
prefetch=False,
|
169 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
170 |
+
print_losses=False,
|
171 |
+
project='ZoeDepth',
|
172 |
+
random_crop=False,
|
173 |
+
random_translate=False,
|
174 |
+
root='.',
|
175 |
+
save_dir='',
|
176 |
+
shared_dict='NULL',
|
177 |
+
tags='',
|
178 |
+
train_midas=True,
|
179 |
+
translate_prob=0.2,
|
180 |
+
type='DA-ZoeDepth',
|
181 |
+
uid='NULL',
|
182 |
+
use_amp=False,
|
183 |
+
use_pretrained_midas=True,
|
184 |
+
use_shared_dict=False,
|
185 |
+
validate_every=0.25,
|
186 |
+
version_name='v1',
|
187 |
+
workers=16),
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
sigloss=dict(type='SILogLoss'),
|
191 |
+
target='coarse',
|
192 |
+
type='BaselinePretrain')
|
193 |
+
optim_wrapper = dict(
|
194 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
195 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
196 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
197 |
+
param_scheduler = dict(
|
198 |
+
base_momentum=0.85,
|
199 |
+
cycle_momentum=True,
|
200 |
+
div_factor=1,
|
201 |
+
final_div_factor=10000,
|
202 |
+
max_momentum=0.95,
|
203 |
+
pct_start=0.5,
|
204 |
+
three_phase=False)
|
205 |
+
project = 'patchfusion'
|
206 |
+
tags = [
|
207 |
+
'coarse',
|
208 |
+
'da',
|
209 |
+
'vitb',
|
210 |
+
]
|
211 |
+
test_in_dataloader = dict(
|
212 |
+
batch_size=1,
|
213 |
+
dataset=dict(
|
214 |
+
data_root='./data/u4k',
|
215 |
+
max_depth=80,
|
216 |
+
min_depth=0.001,
|
217 |
+
mode='infer',
|
218 |
+
split='./data/u4k/splits/test.txt',
|
219 |
+
transform_cfg=dict(network_process_size=[
|
220 |
+
384,
|
221 |
+
512,
|
222 |
+
]),
|
223 |
+
type='UnrealStereo4kDataset'),
|
224 |
+
num_workers=2)
|
225 |
+
test_out_dataloader = dict(
|
226 |
+
batch_size=1,
|
227 |
+
dataset=dict(
|
228 |
+
data_root='./data/u4k',
|
229 |
+
max_depth=80,
|
230 |
+
min_depth=0.001,
|
231 |
+
mode='infer',
|
232 |
+
split='./data/u4k/splits/test_out.txt',
|
233 |
+
transform_cfg=dict(network_process_size=[
|
234 |
+
384,
|
235 |
+
512,
|
236 |
+
]),
|
237 |
+
type='UnrealStereo4kDataset'),
|
238 |
+
num_workers=2)
|
239 |
+
train_cfg = dict(
|
240 |
+
eval_start=0,
|
241 |
+
log_interval=100,
|
242 |
+
max_epochs=24,
|
243 |
+
save_checkpoint_interval=24,
|
244 |
+
train_log_img_interval=500,
|
245 |
+
val_interval=2,
|
246 |
+
val_log_img_interval=50,
|
247 |
+
val_type='epoch_base')
|
248 |
+
train_dataloader = dict(
|
249 |
+
batch_size=4,
|
250 |
+
dataset=dict(
|
251 |
+
data_root='./data/u4k',
|
252 |
+
max_depth=80,
|
253 |
+
min_depth=0.001,
|
254 |
+
mode='train',
|
255 |
+
resize_mode='depth-anything',
|
256 |
+
split='./data/u4k/splits/train.txt',
|
257 |
+
transform_cfg=dict(
|
258 |
+
degree=1.0, network_process_size=[
|
259 |
+
392,
|
260 |
+
518,
|
261 |
+
], random_crop=True),
|
262 |
+
type='UnrealStereo4kDataset'),
|
263 |
+
num_workers=4)
|
264 |
+
val_dataloader = dict(
|
265 |
+
batch_size=1,
|
266 |
+
dataset=dict(
|
267 |
+
data_root='./data/u4k',
|
268 |
+
max_depth=80,
|
269 |
+
min_depth=0.001,
|
270 |
+
mode='infer',
|
271 |
+
resize_mode='depth-anything',
|
272 |
+
split='./data/u4k/splits/val.txt',
|
273 |
+
transform_cfg=dict(degree=1.0, network_process_size=[
|
274 |
+
392,
|
275 |
+
518,
|
276 |
+
]),
|
277 |
+
type='UnrealStereo4kDataset'),
|
278 |
+
num_workers=2)
|
279 |
+
work_dir = './work_dir/depthanything_vitb_u4k/coarse_pretrain'
|
280 |
+
zoe_depth_config = dict(
|
281 |
+
attractor_alpha=1000,
|
282 |
+
attractor_gamma=2,
|
283 |
+
attractor_kind='mean',
|
284 |
+
attractor_type='inv',
|
285 |
+
aug=True,
|
286 |
+
bin_centers_type='softplus',
|
287 |
+
bin_embedding_dim=128,
|
288 |
+
clip_grad=0.1,
|
289 |
+
dataset='nyu',
|
290 |
+
depth_anything=True,
|
291 |
+
distributed=True,
|
292 |
+
do_resize=False,
|
293 |
+
force_keep_ar=True,
|
294 |
+
freeze_midas_bn=True,
|
295 |
+
gpu='NULL',
|
296 |
+
img_size=[
|
297 |
+
392,
|
298 |
+
518,
|
299 |
+
],
|
300 |
+
inverse_midas=False,
|
301 |
+
log_images_every=0.1,
|
302 |
+
max_depth=80,
|
303 |
+
max_temp=50.0,
|
304 |
+
max_translation=100,
|
305 |
+
memory_efficient=True,
|
306 |
+
midas_model_type='vitb',
|
307 |
+
min_depth=0.001,
|
308 |
+
min_temp=0.0212,
|
309 |
+
model='zoedepth',
|
310 |
+
n_attractors=[
|
311 |
+
16,
|
312 |
+
8,
|
313 |
+
4,
|
314 |
+
1,
|
315 |
+
],
|
316 |
+
n_bins=64,
|
317 |
+
name='ZoeDepth',
|
318 |
+
notes='',
|
319 |
+
output_distribution='logbinomial',
|
320 |
+
prefetch=False,
|
321 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
322 |
+
print_losses=False,
|
323 |
+
project='ZoeDepth',
|
324 |
+
random_crop=False,
|
325 |
+
random_translate=False,
|
326 |
+
root='.',
|
327 |
+
save_dir='',
|
328 |
+
shared_dict='NULL',
|
329 |
+
tags='',
|
330 |
+
train_midas=True,
|
331 |
+
translate_prob=0.2,
|
332 |
+
type='DA-ZoeDepth',
|
333 |
+
uid='NULL',
|
334 |
+
use_amp=False,
|
335 |
+
use_pretrained_midas=True,
|
336 |
+
use_shared_dict=False,
|
337 |
+
validate_every=0.25,
|
338 |
+
version_name='v1',
|
339 |
+
workers=16)
|
340 |
+
|
341 |
+
2024/03/15 09:55:28 - patchstitcher - INFO - Loading deepnet from local::./work_dir/DepthAnything_vitb.pt
|
342 |
+
2024/03/15 09:55:28 - patchstitcher - INFO - Current zoedepth.core.prep.resizer is <class 'torch.nn.modules.linear.Identity'>
|
343 |
+
2024/03/15 09:55:28 - patchstitcher - INFO - DistributedDataParallel(
|
344 |
+
(module): BaselinePretrain(
|
345 |
+
(coarse_branch): ZoeDepth(
|
346 |
+
(core): DepthAnythingCore(
|
347 |
+
(core): DPT_DINOv2(
|
348 |
+
(pretrained): DinoVisionTransformer(
|
349 |
+
(patch_embed): PatchEmbed(
|
350 |
+
(proj): Conv2d(3, 768, kernel_size=(14, 14), stride=(14, 14))
|
351 |
+
(norm): Identity()
|
352 |
+
)
|
353 |
+
(blocks): ModuleList(
|
354 |
+
(0-11): 12 x NestedTensorBlock(
|
355 |
+
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
356 |
+
(attn): MemEffAttention(
|
357 |
+
(qkv): Linear(in_features=768, out_features=2304, bias=True)
|
358 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
359 |
+
(proj): Linear(in_features=768, out_features=768, bias=True)
|
360 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
361 |
+
)
|
362 |
+
(ls1): LayerScale()
|
363 |
+
(drop_path1): Identity()
|
364 |
+
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
365 |
+
(mlp): Mlp(
|
366 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
367 |
+
(act): GELU(approximate='none')
|
368 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
369 |
+
(drop): Dropout(p=0.0, inplace=False)
|
370 |
+
)
|
371 |
+
(ls2): LayerScale()
|
372 |
+
(drop_path2): Identity()
|
373 |
+
)
|
374 |
+
)
|
375 |
+
(norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
376 |
+
(head): Identity()
|
377 |
+
)
|
378 |
+
(depth_head): DPTHead(
|
379 |
+
(projects): ModuleList(
|
380 |
+
(0): Conv2d(768, 96, kernel_size=(1, 1), stride=(1, 1))
|
381 |
+
(1): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))
|
382 |
+
(2): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))
|
383 |
+
(3): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
|
384 |
+
)
|
385 |
+
(resize_layers): ModuleList(
|
386 |
+
(0): ConvTranspose2d(96, 96, kernel_size=(4, 4), stride=(4, 4))
|
387 |
+
(1): ConvTranspose2d(192, 192, kernel_size=(2, 2), stride=(2, 2))
|
388 |
+
(2): Identity()
|
389 |
+
(3): Conv2d(768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
390 |
+
)
|
391 |
+
(scratch): Module(
|
392 |
+
(layer1_rn): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
393 |
+
(layer2_rn): Conv2d(192, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
394 |
+
(layer3_rn): Conv2d(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
395 |
+
(layer4_rn): Conv2d(768, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
396 |
+
(refinenet1): FeatureFusionBlock(
|
397 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
398 |
+
(resConfUnit1): ResidualConvUnit(
|
399 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
400 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
401 |
+
(activation): ReLU()
|
402 |
+
(skip_add): FloatFunctional(
|
403 |
+
(activation_post_process): Identity()
|
404 |
+
)
|
405 |
+
)
|
406 |
+
(resConfUnit2): ResidualConvUnit(
|
407 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
408 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
409 |
+
(activation): ReLU()
|
410 |
+
(skip_add): FloatFunctional(
|
411 |
+
(activation_post_process): Identity()
|
412 |
+
)
|
413 |
+
)
|
414 |
+
(skip_add): FloatFunctional(
|
415 |
+
(activation_post_process): Identity()
|
416 |
+
)
|
417 |
+
)
|
418 |
+
(refinenet2): FeatureFusionBlock(
|
419 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
420 |
+
(resConfUnit1): ResidualConvUnit(
|
421 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
422 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
423 |
+
(activation): ReLU()
|
424 |
+
(skip_add): FloatFunctional(
|
425 |
+
(activation_post_process): Identity()
|
426 |
+
)
|
427 |
+
)
|
428 |
+
(resConfUnit2): ResidualConvUnit(
|
429 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
430 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
431 |
+
(activation): ReLU()
|
432 |
+
(skip_add): FloatFunctional(
|
433 |
+
(activation_post_process): Identity()
|
434 |
+
)
|
435 |
+
)
|
436 |
+
(skip_add): FloatFunctional(
|
437 |
+
(activation_post_process): Identity()
|
438 |
+
)
|
439 |
+
)
|
440 |
+
(refinenet3): FeatureFusionBlock(
|
441 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
442 |
+
(resConfUnit1): ResidualConvUnit(
|
443 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
444 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
445 |
+
(activation): ReLU()
|
446 |
+
(skip_add): FloatFunctional(
|
447 |
+
(activation_post_process): Identity()
|
448 |
+
)
|
449 |
+
)
|
450 |
+
(resConfUnit2): ResidualConvUnit(
|
451 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
452 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
453 |
+
(activation): ReLU()
|
454 |
+
(skip_add): FloatFunctional(
|
455 |
+
(activation_post_process): Identity()
|
456 |
+
)
|
457 |
+
)
|
458 |
+
(skip_add): FloatFunctional(
|
459 |
+
(activation_post_process): Identity()
|
460 |
+
)
|
461 |
+
)
|
462 |
+
(refinenet4): FeatureFusionBlock(
|
463 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
464 |
+
(resConfUnit1): ResidualConvUnit(
|
465 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
466 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
467 |
+
(activation): ReLU()
|
468 |
+
(skip_add): FloatFunctional(
|
469 |
+
(activation_post_process): Identity()
|
470 |
+
)
|
471 |
+
)
|
472 |
+
(resConfUnit2): ResidualConvUnit(
|
473 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
474 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
475 |
+
(activation): ReLU()
|
476 |
+
(skip_add): FloatFunctional(
|
477 |
+
(activation_post_process): Identity()
|
478 |
+
)
|
479 |
+
)
|
480 |
+
(skip_add): FloatFunctional(
|
481 |
+
(activation_post_process): Identity()
|
482 |
+
)
|
483 |
+
)
|
484 |
+
(output_conv1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
485 |
+
(output_conv2): Sequential(
|
486 |
+
(0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
487 |
+
(1): ReLU(inplace=True)
|
488 |
+
(2): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
|
489 |
+
(3): ReLU(inplace=True)
|
490 |
+
(4): Identity()
|
491 |
+
)
|
492 |
+
)
|
493 |
+
)
|
494 |
+
)
|
495 |
+
)
|
496 |
+
(conv2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
497 |
+
(seed_bin_regressor): SeedBinRegressorUnnormed(
|
498 |
+
(_net): Sequential(
|
499 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
500 |
+
(1): ReLU(inplace=True)
|
501 |
+
(2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
502 |
+
(3): Softplus(beta=1, threshold=20)
|
503 |
+
)
|
504 |
+
)
|
505 |
+
(seed_projector): Projector(
|
506 |
+
(_net): Sequential(
|
507 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
508 |
+
(1): ReLU(inplace=True)
|
509 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
510 |
+
)
|
511 |
+
)
|
512 |
+
(projectors): ModuleList(
|
513 |
+
(0-3): 4 x Projector(
|
514 |
+
(_net): Sequential(
|
515 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
516 |
+
(1): ReLU(inplace=True)
|
517 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
518 |
+
)
|
519 |
+
)
|
520 |
+
)
|
521 |
+
(attractors): ModuleList(
|
522 |
+
(0): AttractorLayerUnnormed(
|
523 |
+
(_net): Sequential(
|
524 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
525 |
+
(1): ReLU(inplace=True)
|
526 |
+
(2): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
|
527 |
+
(3): Softplus(beta=1, threshold=20)
|
528 |
+
)
|
529 |
+
)
|
530 |
+
(1): AttractorLayerUnnormed(
|
531 |
+
(_net): Sequential(
|
532 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
533 |
+
(1): ReLU(inplace=True)
|
534 |
+
(2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
|
535 |
+
(3): Softplus(beta=1, threshold=20)
|
536 |
+
)
|
537 |
+
)
|
538 |
+
(2): AttractorLayerUnnormed(
|
539 |
+
(_net): Sequential(
|
540 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
541 |
+
(1): ReLU(inplace=True)
|
542 |
+
(2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
|
543 |
+
(3): Softplus(beta=1, threshold=20)
|
544 |
+
)
|
545 |
+
)
|
546 |
+
(3): AttractorLayerUnnormed(
|
547 |
+
(_net): Sequential(
|
548 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
549 |
+
(1): ReLU(inplace=True)
|
550 |
+
(2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
|
551 |
+
(3): Softplus(beta=1, threshold=20)
|
552 |
+
)
|
553 |
+
)
|
554 |
+
)
|
555 |
+
(conditional_log_binomial): ConditionalLogBinomial(
|
556 |
+
(log_binomial_transform): LogBinomial()
|
557 |
+
(mlp): Sequential(
|
558 |
+
(0): Conv2d(161, 80, kernel_size=(1, 1), stride=(1, 1))
|
559 |
+
(1): GELU(approximate='none')
|
560 |
+
(2): Conv2d(80, 4, kernel_size=(1, 1), stride=(1, 1))
|
561 |
+
(3): Softplus(beta=1, threshold=20)
|
562 |
+
)
|
563 |
+
)
|
564 |
+
)
|
565 |
+
(sigloss): SILogLoss()
|
566 |
+
)
|
567 |
+
)
|
568 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - successfully init trainer
|
569 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.cls_token
|
570 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.pos_embed
|
571 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.mask_token
|
572 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.patch_embed.proj.weight
|
573 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.patch_embed.proj.bias
|
574 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm1.weight
|
575 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm1.bias
|
576 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.qkv.weight
|
577 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.qkv.bias
|
578 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.proj.weight
|
579 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.proj.bias
|
580 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.ls1.gamma
|
581 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm2.weight
|
582 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm2.bias
|
583 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc1.weight
|
584 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc1.bias
|
585 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc2.weight
|
586 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc2.bias
|
587 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.ls2.gamma
|
588 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm1.weight
|
589 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm1.bias
|
590 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.qkv.weight
|
591 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.qkv.bias
|
592 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.proj.weight
|
593 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.proj.bias
|
594 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.ls1.gamma
|
595 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm2.weight
|
596 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm2.bias
|
597 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc1.weight
|
598 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc1.bias
|
599 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc2.weight
|
600 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc2.bias
|
601 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.ls2.gamma
|
602 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm1.weight
|
603 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm1.bias
|
604 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.qkv.weight
|
605 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.qkv.bias
|
606 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.proj.weight
|
607 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.proj.bias
|
608 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.ls1.gamma
|
609 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm2.weight
|
610 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm2.bias
|
611 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc1.weight
|
612 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc1.bias
|
613 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc2.weight
|
614 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc2.bias
|
615 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.ls2.gamma
|
616 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm1.weight
|
617 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm1.bias
|
618 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.qkv.weight
|
619 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.qkv.bias
|
620 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.proj.weight
|
621 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.proj.bias
|
622 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.ls1.gamma
|
623 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm2.weight
|
624 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm2.bias
|
625 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc1.weight
|
626 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc1.bias
|
627 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc2.weight
|
628 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc2.bias
|
629 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.ls2.gamma
|
630 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm1.weight
|
631 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm1.bias
|
632 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.qkv.weight
|
633 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.qkv.bias
|
634 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.proj.weight
|
635 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.proj.bias
|
636 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.ls1.gamma
|
637 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm2.weight
|
638 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm2.bias
|
639 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc1.weight
|
640 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc1.bias
|
641 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc2.weight
|
642 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc2.bias
|
643 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.ls2.gamma
|
644 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm1.weight
|
645 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm1.bias
|
646 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.qkv.weight
|
647 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.qkv.bias
|
648 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.proj.weight
|
649 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.proj.bias
|
650 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.ls1.gamma
|
651 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm2.weight
|
652 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm2.bias
|
653 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc1.weight
|
654 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc1.bias
|
655 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc2.weight
|
656 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc2.bias
|
657 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.ls2.gamma
|
658 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm1.weight
|
659 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm1.bias
|
660 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.qkv.weight
|
661 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.qkv.bias
|
662 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.proj.weight
|
663 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.proj.bias
|
664 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.ls1.gamma
|
665 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm2.weight
|
666 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm2.bias
|
667 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc1.weight
|
668 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc1.bias
|
669 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc2.weight
|
670 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc2.bias
|
671 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.ls2.gamma
|
672 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm1.weight
|
673 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm1.bias
|
674 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.qkv.weight
|
675 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.qkv.bias
|
676 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.proj.weight
|
677 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.proj.bias
|
678 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.ls1.gamma
|
679 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm2.weight
|
680 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm2.bias
|
681 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc1.weight
|
682 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc1.bias
|
683 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc2.weight
|
684 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc2.bias
|
685 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.ls2.gamma
|
686 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm1.weight
|
687 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm1.bias
|
688 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.qkv.weight
|
689 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.qkv.bias
|
690 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.proj.weight
|
691 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.proj.bias
|
692 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.ls1.gamma
|
693 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm2.weight
|
694 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm2.bias
|
695 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc1.weight
|
696 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc1.bias
|
697 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc2.weight
|
698 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc2.bias
|
699 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.ls2.gamma
|
700 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm1.weight
|
701 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm1.bias
|
702 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.qkv.weight
|
703 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.qkv.bias
|
704 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.proj.weight
|
705 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.proj.bias
|
706 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.ls1.gamma
|
707 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm2.weight
|
708 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm2.bias
|
709 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc1.weight
|
710 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc1.bias
|
711 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc2.weight
|
712 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc2.bias
|
713 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.ls2.gamma
|
714 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm1.weight
|
715 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm1.bias
|
716 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.qkv.weight
|
717 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.qkv.bias
|
718 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.proj.weight
|
719 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.proj.bias
|
720 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.ls1.gamma
|
721 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm2.weight
|
722 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm2.bias
|
723 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc1.weight
|
724 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc1.bias
|
725 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc2.weight
|
726 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc2.bias
|
727 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.ls2.gamma
|
728 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm1.weight
|
729 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm1.bias
|
730 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.qkv.weight
|
731 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.qkv.bias
|
732 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.proj.weight
|
733 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.proj.bias
|
734 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.ls1.gamma
|
735 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm2.weight
|
736 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm2.bias
|
737 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc1.weight
|
738 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc1.bias
|
739 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc2.weight
|
740 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc2.bias
|
741 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.ls2.gamma
|
742 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.norm.weight
|
743 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.norm.bias
|
744 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.0.weight
|
745 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.0.bias
|
746 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.1.weight
|
747 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.1.bias
|
748 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.2.weight
|
749 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.2.bias
|
750 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.3.weight
|
751 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.3.bias
|
752 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.0.weight
|
753 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.0.bias
|
754 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.1.weight
|
755 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.1.bias
|
756 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.3.weight
|
757 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.3.bias
|
758 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer1_rn.weight
|
759 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer2_rn.weight
|
760 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer3_rn.weight
|
761 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer4_rn.weight
|
762 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.out_conv.weight
|
763 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.out_conv.bias
|
764 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.weight
|
765 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.bias
|
766 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.weight
|
767 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.bias
|
768 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.weight
|
769 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.bias
|
770 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.weight
|
771 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.bias
|
772 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.out_conv.weight
|
773 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.out_conv.bias
|
774 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.weight
|
775 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.bias
|
776 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.weight
|
777 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.bias
|
778 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.weight
|
779 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.bias
|
780 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.weight
|
781 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.bias
|
782 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.out_conv.weight
|
783 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.out_conv.bias
|
784 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.weight
|
785 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.bias
|
786 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.weight
|
787 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.bias
|
788 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.weight
|
789 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.bias
|
790 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.weight
|
791 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.bias
|
792 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.out_conv.weight
|
793 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.out_conv.bias
|
794 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.weight
|
795 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.bias
|
796 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.weight
|
797 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.bias
|
798 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.weight
|
799 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.bias
|
800 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.weight
|
801 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.bias
|
802 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv1.weight
|
803 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv1.bias
|
804 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.0.weight
|
805 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.0.bias
|
806 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.2.weight
|
807 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.2.bias
|
808 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.conv2.weight
|
809 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.conv2.bias
|
810 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.0.weight
|
811 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.0.bias
|
812 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.2.weight
|
813 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.2.bias
|
814 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.0.weight
|
815 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.0.bias
|
816 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.2.weight
|
817 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.2.bias
|
818 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.0.weight
|
819 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.0.bias
|
820 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.2.weight
|
821 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.2.bias
|
822 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.0.weight
|
823 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.0.bias
|
824 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.2.weight
|
825 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.2.bias
|
826 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.0.weight
|
827 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.0.bias
|
828 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.2.weight
|
829 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.2.bias
|
830 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.0.weight
|
831 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.0.bias
|
832 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.2.weight
|
833 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.2.bias
|
834 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.0.weight
|
835 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.0.bias
|
836 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.2.weight
|
837 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.2.bias
|
838 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.0.weight
|
839 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.0.bias
|
840 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.2.weight
|
841 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.2.bias
|
842 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.0.weight
|
843 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.0.bias
|
844 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.2.weight
|
845 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.2.bias
|
846 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.0.weight
|
847 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.0.bias
|
848 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.2.weight
|
849 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.2.bias
|
850 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.0.weight
|
851 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.0.bias
|
852 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.2.weight
|
853 |
+
2024/03/15 09:55:34 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.2.bias
|
854 |
+
2024/03/15 09:57:50 - patchstitcher - INFO - Epoch: [01/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.9729490280151367 - coarse_loss: 1.9729490280151367
|
855 |
+
2024/03/15 09:59:39 - patchstitcher - INFO - Epoch: [01/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.6159499883651733 - coarse_loss: 1.6159499883651733
|
856 |
+
2024/03/15 10:01:20 - patchstitcher - INFO - Epoch: [01/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6653645038604736 - coarse_loss: 1.6653645038604736
|
857 |
+
2024/03/15 10:03:08 - patchstitcher - INFO - Epoch: [01/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.3738189935684204 - coarse_loss: 1.3738189935684204
|
858 |
+
2024/03/15 10:06:24 - patchstitcher - INFO - Epoch: [02/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0679881572723389 - coarse_loss: 1.0679881572723389
|
859 |
+
2024/03/15 10:08:12 - patchstitcher - INFO - Epoch: [02/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0449714660644531 - coarse_loss: 1.0449714660644531
|
860 |
+
2024/03/15 10:09:57 - patchstitcher - INFO - Epoch: [02/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3200674057006836 - coarse_loss: 1.3200674057006836
|
861 |
+
2024/03/15 10:11:44 - patchstitcher - INFO - Epoch: [02/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2463884353637695 - coarse_loss: 1.2463884353637695
|
862 |
+
2024/03/15 10:13:21 - patchstitcher - INFO - Evaluation Summary:
|
863 |
+
+-----------+-----------+----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
864 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
865 |
+
+-----------+-----------+----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
866 |
+
| 0.9277873 | 0.9864464 | 0.994876 | 0.093889 | 1.7125608 | 0.0411139 | 0.1284599 | 10.310956 | 0.2504752 | 1.2484615 |
|
867 |
+
+-----------+-----------+----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
868 |
+
2024/03/15 10:15:11 - patchstitcher - INFO - Epoch: [03/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1642838716506958 - coarse_loss: 1.1642838716506958
|
869 |
+
2024/03/15 10:16:56 - patchstitcher - INFO - Epoch: [03/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.1062591075897217 - coarse_loss: 1.1062591075897217
|
870 |
+
2024/03/15 10:18:40 - patchstitcher - INFO - Epoch: [03/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.491640329360962 - coarse_loss: 1.491640329360962
|
871 |
+
2024/03/15 10:20:26 - patchstitcher - INFO - Epoch: [03/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0693362951278687 - coarse_loss: 1.0693362951278687
|
872 |
+
2024/03/15 10:23:28 - patchstitcher - INFO - Epoch: [04/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2830930948257446 - coarse_loss: 1.2830930948257446
|
873 |
+
2024/03/15 10:25:13 - patchstitcher - INFO - Epoch: [04/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8494630455970764 - coarse_loss: 0.8494630455970764
|
874 |
+
2024/03/15 10:26:59 - patchstitcher - INFO - Epoch: [04/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.100481390953064 - coarse_loss: 1.100481390953064
|
875 |
+
2024/03/15 10:28:45 - patchstitcher - INFO - Epoch: [04/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6722239255905151 - coarse_loss: 0.6722239255905151
|
876 |
+
2024/03/15 10:30:18 - patchstitcher - INFO - Evaluation Summary:
|
877 |
+
+----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
878 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
879 |
+
+----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
880 |
+
| 0.961338 | 0.9893523 | 0.9953463 | 0.0692743 | 1.5390607 | 0.030108 | 0.1050118 | 9.1967623 | 0.1975309 | 1.1110629 |
|
881 |
+
+----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
882 |
+
2024/03/15 10:32:10 - patchstitcher - INFO - Epoch: [05/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5996298789978027 - coarse_loss: 0.5996298789978027
|
883 |
+
2024/03/15 10:33:58 - patchstitcher - INFO - Epoch: [05/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5094271302223206 - coarse_loss: 0.5094271302223206
|
884 |
+
2024/03/15 10:35:48 - patchstitcher - INFO - Epoch: [05/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7459169626235962 - coarse_loss: 0.7459169626235962
|
885 |
+
2024/03/15 10:37:33 - patchstitcher - INFO - Epoch: [05/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7367539405822754 - coarse_loss: 0.7367539405822754
|
886 |
+
2024/03/15 10:40:39 - patchstitcher - INFO - Epoch: [06/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3089935779571533 - coarse_loss: 1.3089935779571533
|
887 |
+
2024/03/15 10:42:24 - patchstitcher - INFO - Epoch: [06/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9458222985267639 - coarse_loss: 0.9458222985267639
|
888 |
+
2024/03/15 10:44:12 - patchstitcher - INFO - Epoch: [06/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7383743524551392 - coarse_loss: 0.7383743524551392
|
889 |
+
2024/03/15 10:45:59 - patchstitcher - INFO - Epoch: [06/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6774943470954895 - coarse_loss: 0.6774943470954895
|
890 |
+
2024/03/15 10:47:29 - patchstitcher - INFO - Evaluation Summary:
|
891 |
+
+-----------+-----------+-----------+----------+----------+-----------+-----------+-----------+-----------+-----------+
|
892 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
893 |
+
+-----------+-----------+-----------+----------+----------+-----------+-----------+-----------+-----------+-----------+
|
894 |
+
| 0.9625513 | 0.9896059 | 0.9953454 | 0.076086 | 1.553624 | 0.0339274 | 0.1113379 | 8.9179546 | 0.1912439 | 1.0962123 |
|
895 |
+
+-----------+-----------+-----------+----------+----------+-----------+-----------+-----------+-----------+-----------+
|
896 |
+
2024/03/15 10:49:20 - patchstitcher - INFO - Epoch: [07/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7863880395889282 - coarse_loss: 0.7863880395889282
|
897 |
+
2024/03/15 10:51:04 - patchstitcher - INFO - Epoch: [07/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.1585361957550049 - coarse_loss: 1.1585361957550049
|
898 |
+
2024/03/15 10:52:54 - patchstitcher - INFO - Epoch: [07/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.1414254903793335 - coarse_loss: 1.1414254903793335
|
899 |
+
2024/03/15 10:54:41 - patchstitcher - INFO - Epoch: [07/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6607706546783447 - coarse_loss: 0.6607706546783447
|
900 |
+
2024/03/15 10:57:47 - patchstitcher - INFO - Epoch: [08/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8438395857810974 - coarse_loss: 0.8438395857810974
|
901 |
+
2024/03/15 10:59:37 - patchstitcher - INFO - Epoch: [08/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.931841254234314 - coarse_loss: 0.931841254234314
|
902 |
+
2024/03/15 11:01:23 - patchstitcher - INFO - Epoch: [08/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.2649768590927124 - coarse_loss: 1.2649768590927124
|
903 |
+
2024/03/15 11:03:05 - patchstitcher - INFO - Epoch: [08/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.356317400932312 - coarse_loss: 1.356317400932312
|
904 |
+
2024/03/15 11:04:39 - patchstitcher - INFO - Evaluation Summary:
|
905 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
906 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
907 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
908 |
+
| 0.9688624 | 0.9900475 | 0.9955412 | 0.0621825 | 1.4741381 | 0.0269014 | 0.0983563 | 8.5882915 | 0.1738514 | 1.0249666 |
|
909 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
910 |
+
2024/03/15 11:06:28 - patchstitcher - INFO - Epoch: [09/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1434571743011475 - coarse_loss: 1.1434571743011475
|
911 |
+
2024/03/15 11:08:19 - patchstitcher - INFO - Epoch: [09/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.7681660652160645 - coarse_loss: 1.7681660652160645
|
912 |
+
2024/03/15 11:10:04 - patchstitcher - INFO - Epoch: [09/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8547622561454773 - coarse_loss: 0.8547622561454773
|
913 |
+
2024/03/15 11:11:49 - patchstitcher - INFO - Epoch: [09/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.869714617729187 - coarse_loss: 0.869714617729187
|
914 |
+
2024/03/15 11:14:59 - patchstitcher - INFO - Epoch: [10/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5332772731781006 - coarse_loss: 0.5332772731781006
|
915 |
+
2024/03/15 11:16:44 - patchstitcher - INFO - Epoch: [10/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8691495060920715 - coarse_loss: 0.8691495060920715
|
916 |
+
2024/03/15 11:18:28 - patchstitcher - INFO - Epoch: [10/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.4371870756149292 - coarse_loss: 1.4371870756149292
|
917 |
+
2024/03/15 11:20:14 - patchstitcher - INFO - Epoch: [10/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9575653076171875 - coarse_loss: 0.9575653076171875
|
918 |
+
2024/03/15 11:21:45 - patchstitcher - INFO - Evaluation Summary:
|
919 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
920 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
921 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
922 |
+
| 0.9679335 | 0.9903103 | 0.9957452 | 0.0634565 | 1.4144222 | 0.0269387 | 0.0964634 | 8.5336222 | 0.1681394 | 1.0266862 |
|
923 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
924 |
+
2024/03/15 11:23:36 - patchstitcher - INFO - Epoch: [11/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8048105835914612 - coarse_loss: 0.8048105835914612
|
925 |
+
2024/03/15 11:25:22 - patchstitcher - INFO - Epoch: [11/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8616613149642944 - coarse_loss: 0.8616613149642944
|
926 |
+
2024/03/15 11:27:12 - patchstitcher - INFO - Epoch: [11/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.221915364265442 - coarse_loss: 1.221915364265442
|
927 |
+
2024/03/15 11:28:59 - patchstitcher - INFO - Epoch: [11/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5273403525352478 - coarse_loss: 0.5273403525352478
|
928 |
+
2024/03/15 11:31:59 - patchstitcher - INFO - Epoch: [12/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6490796208381653 - coarse_loss: 0.6490796208381653
|
929 |
+
2024/03/15 11:33:46 - patchstitcher - INFO - Epoch: [12/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9228641986846924 - coarse_loss: 0.9228641986846924
|
930 |
+
2024/03/15 11:35:30 - patchstitcher - INFO - Epoch: [12/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8991217017173767 - coarse_loss: 0.8991217017173767
|
931 |
+
2024/03/15 11:37:21 - patchstitcher - INFO - Epoch: [12/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.778996467590332 - coarse_loss: 0.778996467590332
|
932 |
+
2024/03/15 11:38:51 - patchstitcher - INFO - Evaluation Summary:
|
933 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+
|
934 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
935 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+
|
936 |
+
| 0.9700605 | 0.9907225 | 0.9956863 | 0.0593423 | 1.3817834 | 0.0258237 | 0.095056 | 8.4508466 | 0.1639893 | 1.0006335 |
|
937 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+
|
938 |
+
2024/03/15 11:40:42 - patchstitcher - INFO - Epoch: [13/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2246499061584473 - coarse_loss: 1.2246499061584473
|
939 |
+
2024/03/15 11:42:33 - patchstitcher - INFO - Epoch: [13/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.055445671081543 - coarse_loss: 1.055445671081543
|
940 |
+
2024/03/15 11:44:18 - patchstitcher - INFO - Epoch: [13/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8403045535087585 - coarse_loss: 0.8403045535087585
|
941 |
+
2024/03/15 11:46:03 - patchstitcher - INFO - Epoch: [13/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7852007150650024 - coarse_loss: 0.7852007150650024
|
942 |
+
2024/03/15 11:49:05 - patchstitcher - INFO - Epoch: [14/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5313113331794739 - coarse_loss: 0.5313113331794739
|
943 |
+
2024/03/15 11:50:53 - patchstitcher - INFO - Epoch: [14/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.803260326385498 - coarse_loss: 0.803260326385498
|
944 |
+
2024/03/15 11:52:35 - patchstitcher - INFO - Epoch: [14/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6353864669799805 - coarse_loss: 0.6353864669799805
|
945 |
+
2024/03/15 11:54:22 - patchstitcher - INFO - Epoch: [14/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.603277862071991 - coarse_loss: 0.603277862071991
|
946 |
+
2024/03/15 11:55:54 - patchstitcher - INFO - Evaluation Summary:
|
947 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
948 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
949 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
950 |
+
| 0.9716077 | 0.9908243 | 0.9958379 | 0.0603097 | 1.3795547 | 0.025826 | 0.0942337 | 8.2481922 | 0.1615328 | 1.0314286 |
|
951 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
952 |
+
2024/03/15 11:57:46 - patchstitcher - INFO - Epoch: [15/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.68681800365448 - coarse_loss: 0.68681800365448
|
953 |
+
2024/03/15 11:59:38 - patchstitcher - INFO - Epoch: [15/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8562105894088745 - coarse_loss: 0.8562105894088745
|
954 |
+
2024/03/15 12:01:24 - patchstitcher - INFO - Epoch: [15/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0672423839569092 - coarse_loss: 1.0672423839569092
|
955 |
+
2024/03/15 12:03:05 - patchstitcher - INFO - Epoch: [15/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7026287317276001 - coarse_loss: 0.7026287317276001
|
956 |
+
2024/03/15 12:06:08 - patchstitcher - INFO - Epoch: [16/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9886091947555542 - coarse_loss: 0.9886091947555542
|
957 |
+
2024/03/15 12:07:54 - patchstitcher - INFO - Epoch: [16/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6522326469421387 - coarse_loss: 0.6522326469421387
|
958 |
+
2024/03/15 12:09:39 - patchstitcher - INFO - Epoch: [16/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9577221870422363 - coarse_loss: 0.9577221870422363
|
959 |
+
2024/03/15 12:11:22 - patchstitcher - INFO - Epoch: [16/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.7307658195495605 - coarse_loss: 1.7307658195495605
|
960 |
+
2024/03/15 12:12:51 - patchstitcher - INFO - Evaluation Summary:
|
961 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
962 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
963 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
964 |
+
| 0.9747152 | 0.9908944 | 0.9959154 | 0.0511857 | 1.3574797 | 0.0221211 | 0.0867927 | 7.9538576 | 0.1511261 | 1.0003225 |
|
965 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
966 |
+
2024/03/15 12:14:43 - patchstitcher - INFO - Epoch: [17/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5646010637283325 - coarse_loss: 0.5646010637283325
|
967 |
+
2024/03/15 12:16:28 - patchstitcher - INFO - Epoch: [17/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8057535290718079 - coarse_loss: 0.8057535290718079
|
968 |
+
2024/03/15 12:18:17 - patchstitcher - INFO - Epoch: [17/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.11107337474823 - coarse_loss: 1.11107337474823
|
969 |
+
2024/03/15 12:20:01 - patchstitcher - INFO - Epoch: [17/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.187990427017212 - coarse_loss: 1.187990427017212
|
970 |
+
2024/03/15 12:23:09 - patchstitcher - INFO - Epoch: [18/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6382083892822266 - coarse_loss: 0.6382083892822266
|
971 |
+
2024/03/15 12:24:49 - patchstitcher - INFO - Epoch: [18/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5392951965332031 - coarse_loss: 0.5392951965332031
|
972 |
+
2024/03/15 12:26:37 - patchstitcher - INFO - Epoch: [18/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8188748359680176 - coarse_loss: 0.8188748359680176
|
973 |
+
2024/03/15 12:28:18 - patchstitcher - INFO - Epoch: [18/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0811210870742798 - coarse_loss: 1.0811210870742798
|
974 |
+
2024/03/15 12:29:49 - patchstitcher - INFO - Evaluation Summary:
|
975 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
976 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
977 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
978 |
+
| 0.975323 | 0.9911468 | 0.9959684 | 0.0483459 | 1.3259571 | 0.0207656 | 0.0842995 | 7.8959624 | 0.1478599 | 0.9762505 |
|
979 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
980 |
+
2024/03/15 12:31:43 - patchstitcher - INFO - Epoch: [19/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5005310773849487 - coarse_loss: 0.5005310773849487
|
981 |
+
2024/03/15 12:33:28 - patchstitcher - INFO - Epoch: [19/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5474035143852234 - coarse_loss: 0.5474035143852234
|
982 |
+
2024/03/15 12:35:16 - patchstitcher - INFO - Epoch: [19/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7799822092056274 - coarse_loss: 0.7799822092056274
|
983 |
+
2024/03/15 12:37:02 - patchstitcher - INFO - Epoch: [19/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5381927490234375 - coarse_loss: 0.5381927490234375
|
984 |
+
2024/03/15 12:40:07 - patchstitcher - INFO - Epoch: [20/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1203773021697998 - coarse_loss: 1.1203773021697998
|
985 |
+
2024/03/15 12:41:51 - patchstitcher - INFO - Epoch: [20/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5552318096160889 - coarse_loss: 0.5552318096160889
|
986 |
+
2024/03/15 12:43:35 - patchstitcher - INFO - Epoch: [20/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.4946790933609009 - coarse_loss: 0.4946790933609009
|
987 |
+
2024/03/15 12:45:21 - patchstitcher - INFO - Epoch: [20/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.829839825630188 - coarse_loss: 0.829839825630188
|
988 |
+
2024/03/15 12:46:50 - patchstitcher - INFO - Evaluation Summary:
|
989 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
990 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
991 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
992 |
+
| 0.9759003 | 0.9912674 | 0.9959566 | 0.0472804 | 1.3156906 | 0.020464 | 0.0841626 | 7.7711489 | 0.1448604 | 0.9643456 |
|
993 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+
|
994 |
+
2024/03/15 12:48:43 - patchstitcher - INFO - Epoch: [21/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8187640905380249 - coarse_loss: 0.8187640905380249
|
995 |
+
2024/03/15 12:50:30 - patchstitcher - INFO - Epoch: [21/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5510168671607971 - coarse_loss: 0.5510168671607971
|
996 |
+
2024/03/15 12:52:22 - patchstitcher - INFO - Epoch: [21/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5071703791618347 - coarse_loss: 0.5071703791618347
|
997 |
+
2024/03/15 12:54:08 - patchstitcher - INFO - Epoch: [21/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.6241310834884644 - coarse_loss: 1.6241310834884644
|
998 |
+
2024/03/15 12:57:18 - patchstitcher - INFO - Epoch: [22/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9662288427352905 - coarse_loss: 0.9662288427352905
|
999 |
+
2024/03/15 12:59:03 - patchstitcher - INFO - Epoch: [22/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.915822446346283 - coarse_loss: 0.915822446346283
|
1000 |
+
2024/03/15 13:00:45 - patchstitcher - INFO - Epoch: [22/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.48746258020401 - coarse_loss: 0.48746258020401
|
1001 |
+
2024/03/15 13:02:29 - patchstitcher - INFO - Epoch: [22/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7346612811088562 - coarse_loss: 0.7346612811088562
|
1002 |
+
2024/03/15 13:04:01 - patchstitcher - INFO - Evaluation Summary:
|
1003 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
|
1004 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1005 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
|
1006 |
+
| 0.9762025 | 0.9913185 | 0.9959977 | 0.0456843 | 1.3065255 | 0.0197035 | 0.0823783 | 7.684332 | 0.1431234 | 0.9606835 |
|
1007 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
|
1008 |
+
2024/03/15 13:05:51 - patchstitcher - INFO - Epoch: [23/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5825149416923523 - coarse_loss: 0.5825149416923523
|
1009 |
+
2024/03/15 13:07:38 - patchstitcher - INFO - Epoch: [23/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0635181665420532 - coarse_loss: 1.0635181665420532
|
1010 |
+
2024/03/15 13:09:24 - patchstitcher - INFO - Epoch: [23/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.632516622543335 - coarse_loss: 1.632516622543335
|
1011 |
+
2024/03/15 13:11:08 - patchstitcher - INFO - Epoch: [23/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.353378415107727 - coarse_loss: 1.353378415107727
|
1012 |
+
2024/03/15 13:14:18 - patchstitcher - INFO - Epoch: [24/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8277870416641235 - coarse_loss: 0.8277870416641235
|
1013 |
+
2024/03/15 13:16:02 - patchstitcher - INFO - Epoch: [24/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5105581283569336 - coarse_loss: 0.5105581283569336
|
1014 |
+
2024/03/15 13:17:45 - patchstitcher - INFO - Epoch: [24/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.43523621559143066 - coarse_loss: 0.43523621559143066
|
1015 |
+
2024/03/15 13:19:31 - patchstitcher - INFO - Epoch: [24/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.40485745668411255 - coarse_loss: 0.40485745668411255
|
1016 |
+
2024/03/15 13:21:02 - patchstitcher - INFO - Evaluation Summary:
|
1017 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1018 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1019 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1020 |
+
| 0.9762546 | 0.9913396 | 0.9959976 | 0.0452784 | 1.2974494 | 0.0194901 | 0.0821238 | 7.7005432 | 0.1431584 | 0.9635146 |
|
1021 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1022 |
+
2024/03/15 13:21:02 - patchstitcher - INFO - Saving ckp, but use the inner get_save_dict fuction to get model_dict
|
1023 |
+
2024/03/15 13:21:02 - patchstitcher - INFO - For saving space. Would you like to save base model several times? :>
|
1024 |
+
2024/03/15 13:21:03 - patchstitcher - INFO - save checkpoint_24.pth at ./work_dir/depthanything_vitb_u4k/coarse_pretrain
|
depthanything_vitb_u4k/coarse_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fa7eccecb3ba6b7f7e7aabcb8e1cc7be703da3d6eaff316bf22237a616b2afb
|
3 |
+
size 1171453994
|
depthanything_vitb_u4k/coarse_pretrain/config.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'coarse_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vitb',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vitb',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
sigloss=dict(type='SILogLoss'),
|
149 |
+
target='coarse',
|
150 |
+
type='BaselinePretrain')
|
151 |
+
optim_wrapper = dict(
|
152 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
153 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
154 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
155 |
+
param_scheduler = dict(
|
156 |
+
base_momentum=0.85,
|
157 |
+
cycle_momentum=True,
|
158 |
+
div_factor=1,
|
159 |
+
final_div_factor=10000,
|
160 |
+
max_momentum=0.95,
|
161 |
+
pct_start=0.5,
|
162 |
+
three_phase=False)
|
163 |
+
project = 'patchfusion'
|
164 |
+
resume = False
|
165 |
+
tags = [
|
166 |
+
'coarse',
|
167 |
+
'da',
|
168 |
+
'vitb',
|
169 |
+
]
|
170 |
+
test_in_dataloader = dict(
|
171 |
+
batch_size=1,
|
172 |
+
dataset=dict(
|
173 |
+
data_root='./data/u4k',
|
174 |
+
max_depth=80,
|
175 |
+
min_depth=0.001,
|
176 |
+
mode='infer',
|
177 |
+
split='./data/u4k/splits/test.txt',
|
178 |
+
transform_cfg=dict(network_process_size=[
|
179 |
+
384,
|
180 |
+
512,
|
181 |
+
]),
|
182 |
+
type='UnrealStereo4kDataset'),
|
183 |
+
num_workers=2)
|
184 |
+
test_out_dataloader = dict(
|
185 |
+
batch_size=1,
|
186 |
+
dataset=dict(
|
187 |
+
data_root='./data/u4k',
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
mode='infer',
|
191 |
+
split='./data/u4k/splits/test_out.txt',
|
192 |
+
transform_cfg=dict(network_process_size=[
|
193 |
+
384,
|
194 |
+
512,
|
195 |
+
]),
|
196 |
+
type='UnrealStereo4kDataset'),
|
197 |
+
num_workers=2)
|
198 |
+
train_cfg = dict(
|
199 |
+
eval_start=0,
|
200 |
+
log_interval=100,
|
201 |
+
max_epochs=24,
|
202 |
+
save_checkpoint_interval=24,
|
203 |
+
train_log_img_interval=500,
|
204 |
+
val_interval=2,
|
205 |
+
val_log_img_interval=50,
|
206 |
+
val_type='epoch_base')
|
207 |
+
train_dataloader = dict(
|
208 |
+
batch_size=4,
|
209 |
+
dataset=dict(
|
210 |
+
data_root='./data/u4k',
|
211 |
+
max_depth=80,
|
212 |
+
min_depth=0.001,
|
213 |
+
mode='train',
|
214 |
+
resize_mode='depth-anything',
|
215 |
+
split='./data/u4k/splits/train.txt',
|
216 |
+
transform_cfg=dict(
|
217 |
+
degree=1.0,
|
218 |
+
network_process_size=[
|
219 |
+
392,
|
220 |
+
518,
|
221 |
+
],
|
222 |
+
random_crop=True,
|
223 |
+
random_crop_size=(
|
224 |
+
540,
|
225 |
+
960,
|
226 |
+
)),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=4)
|
229 |
+
val_dataloader = dict(
|
230 |
+
batch_size=1,
|
231 |
+
dataset=dict(
|
232 |
+
data_root='./data/u4k',
|
233 |
+
max_depth=80,
|
234 |
+
min_depth=0.001,
|
235 |
+
mode='infer',
|
236 |
+
resize_mode='depth-anything',
|
237 |
+
split='./data/u4k/splits/val.txt',
|
238 |
+
transform_cfg=dict(
|
239 |
+
degree=1.0,
|
240 |
+
network_process_size=[
|
241 |
+
392,
|
242 |
+
518,
|
243 |
+
],
|
244 |
+
random_crop_size=(
|
245 |
+
540,
|
246 |
+
960,
|
247 |
+
)),
|
248 |
+
type='UnrealStereo4kDataset'),
|
249 |
+
num_workers=2)
|
250 |
+
work_dir = './work_dir/depthanything_vitb_u4k/coarse_pretrain'
|
251 |
+
zoe_depth_config = dict(
|
252 |
+
attractor_alpha=1000,
|
253 |
+
attractor_gamma=2,
|
254 |
+
attractor_kind='mean',
|
255 |
+
attractor_type='inv',
|
256 |
+
aug=True,
|
257 |
+
bin_centers_type='softplus',
|
258 |
+
bin_embedding_dim=128,
|
259 |
+
clip_grad=0.1,
|
260 |
+
dataset='nyu',
|
261 |
+
depth_anything=True,
|
262 |
+
distributed=True,
|
263 |
+
do_resize=False,
|
264 |
+
force_keep_ar=True,
|
265 |
+
freeze_midas_bn=True,
|
266 |
+
gpu='NULL',
|
267 |
+
img_size=[
|
268 |
+
392,
|
269 |
+
518,
|
270 |
+
],
|
271 |
+
inverse_midas=False,
|
272 |
+
log_images_every=0.1,
|
273 |
+
max_depth=80,
|
274 |
+
max_temp=50.0,
|
275 |
+
max_translation=100,
|
276 |
+
memory_efficient=True,
|
277 |
+
midas_model_type='vitb',
|
278 |
+
min_depth=0.001,
|
279 |
+
min_temp=0.0212,
|
280 |
+
model='zoedepth',
|
281 |
+
n_attractors=[
|
282 |
+
16,
|
283 |
+
8,
|
284 |
+
4,
|
285 |
+
1,
|
286 |
+
],
|
287 |
+
n_bins=64,
|
288 |
+
name='ZoeDepth',
|
289 |
+
notes='',
|
290 |
+
output_distribution='logbinomial',
|
291 |
+
prefetch=False,
|
292 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
293 |
+
print_losses=False,
|
294 |
+
project='ZoeDepth',
|
295 |
+
random_crop=False,
|
296 |
+
random_translate=False,
|
297 |
+
root='.',
|
298 |
+
save_dir='',
|
299 |
+
shared_dict='NULL',
|
300 |
+
tags='',
|
301 |
+
train_midas=True,
|
302 |
+
translate_prob=0.2,
|
303 |
+
type='DA-ZoeDepth',
|
304 |
+
uid='NULL',
|
305 |
+
use_amp=False,
|
306 |
+
use_pretrained_midas=True,
|
307 |
+
use_shared_dict=False,
|
308 |
+
validate_every=0.25,
|
309 |
+
version_name='v1',
|
310 |
+
workers=16)
|
depthanything_vitb_u4k/fine_pretrain/20240315_153036.log
ADDED
@@ -0,0 +1,1028 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024/03/15 15:30:44 - patchstitcher - INFO -
|
2 |
+
------------------------------------------------------------
|
3 |
+
System environment:
|
4 |
+
sys.platform: linux
|
5 |
+
Python: 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) [GCC 12.3.0]
|
6 |
+
CUDA available: True
|
7 |
+
numpy_random_seed: 621
|
8 |
+
GPU 0,1,2,3: NVIDIA A100-SXM4-80GB
|
9 |
+
CUDA_HOME: /sw/rl9g/cuda/11.8/rl9_binary
|
10 |
+
NVCC: Cuda compilation tools, release 11.8, V11.8.89
|
11 |
+
GCC: gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)
|
12 |
+
PyTorch: 2.1.2
|
13 |
+
PyTorch compiling details: PyTorch built with:
|
14 |
+
- GCC 9.3
|
15 |
+
- C++ Version: 201703
|
16 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
|
17 |
+
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
|
18 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
19 |
+
- LAPACK is enabled (usually provided by MKL)
|
20 |
+
- NNPACK is enabled
|
21 |
+
- CPU capability usage: AVX2
|
22 |
+
- CUDA Runtime 11.8
|
23 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
|
24 |
+
- CuDNN 8.7
|
25 |
+
- Magma 2.6.1
|
26 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
27 |
+
|
28 |
+
TorchVision: 0.16.2
|
29 |
+
OpenCV: 4.8.1
|
30 |
+
MMEngine: 0.10.2
|
31 |
+
|
32 |
+
Runtime environment:
|
33 |
+
cudnn_benchmark: True
|
34 |
+
mp_cfg: {'mp_start_method': 'forkserver'}
|
35 |
+
dist_cfg: {'backend': 'nccl'}
|
36 |
+
seed: 621
|
37 |
+
Distributed launcher: pytorch
|
38 |
+
Distributed training: True
|
39 |
+
GPU number: 4
|
40 |
+
------------------------------------------------------------
|
41 |
+
|
42 |
+
2024/03/15 15:30:44 - patchstitcher - INFO - Config:
|
43 |
+
collect_input_args = [
|
44 |
+
'image_lr',
|
45 |
+
'crops_image_hr',
|
46 |
+
'depth_gt',
|
47 |
+
'crop_depths',
|
48 |
+
'bboxs',
|
49 |
+
'image_hr',
|
50 |
+
]
|
51 |
+
convert_syncbn = True
|
52 |
+
debug = False
|
53 |
+
env_cfg = dict(
|
54 |
+
cudnn_benchmark=True,
|
55 |
+
dist_cfg=dict(backend='nccl'),
|
56 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
57 |
+
find_unused_parameters = True
|
58 |
+
general_dataloader = dict(
|
59 |
+
batch_size=1,
|
60 |
+
dataset=dict(
|
61 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
62 |
+
num_workers=2)
|
63 |
+
launcher = 'pytorch'
|
64 |
+
log_name = 'fine_pretrain'
|
65 |
+
max_depth = 80
|
66 |
+
min_depth = 0.001
|
67 |
+
model = dict(
|
68 |
+
coarse_branch=dict(
|
69 |
+
attractor_alpha=1000,
|
70 |
+
attractor_gamma=2,
|
71 |
+
attractor_kind='mean',
|
72 |
+
attractor_type='inv',
|
73 |
+
aug=True,
|
74 |
+
bin_centers_type='softplus',
|
75 |
+
bin_embedding_dim=128,
|
76 |
+
clip_grad=0.1,
|
77 |
+
dataset='nyu',
|
78 |
+
depth_anything=True,
|
79 |
+
distributed=True,
|
80 |
+
do_resize=False,
|
81 |
+
force_keep_ar=True,
|
82 |
+
freeze_midas_bn=True,
|
83 |
+
gpu='NULL',
|
84 |
+
img_size=[
|
85 |
+
392,
|
86 |
+
518,
|
87 |
+
],
|
88 |
+
inverse_midas=False,
|
89 |
+
log_images_every=0.1,
|
90 |
+
max_depth=80,
|
91 |
+
max_temp=50.0,
|
92 |
+
max_translation=100,
|
93 |
+
memory_efficient=True,
|
94 |
+
midas_model_type='vitb',
|
95 |
+
min_depth=0.001,
|
96 |
+
min_temp=0.0212,
|
97 |
+
model='zoedepth',
|
98 |
+
n_attractors=[
|
99 |
+
16,
|
100 |
+
8,
|
101 |
+
4,
|
102 |
+
1,
|
103 |
+
],
|
104 |
+
n_bins=64,
|
105 |
+
name='ZoeDepth',
|
106 |
+
notes='',
|
107 |
+
output_distribution='logbinomial',
|
108 |
+
prefetch=False,
|
109 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
110 |
+
print_losses=False,
|
111 |
+
project='ZoeDepth',
|
112 |
+
random_crop=False,
|
113 |
+
random_translate=False,
|
114 |
+
root='.',
|
115 |
+
save_dir='',
|
116 |
+
shared_dict='NULL',
|
117 |
+
tags='',
|
118 |
+
train_midas=True,
|
119 |
+
translate_prob=0.2,
|
120 |
+
type='DA-ZoeDepth',
|
121 |
+
uid='NULL',
|
122 |
+
use_amp=False,
|
123 |
+
use_pretrained_midas=True,
|
124 |
+
use_shared_dict=False,
|
125 |
+
validate_every=0.25,
|
126 |
+
version_name='v1',
|
127 |
+
workers=16),
|
128 |
+
fine_branch=dict(
|
129 |
+
attractor_alpha=1000,
|
130 |
+
attractor_gamma=2,
|
131 |
+
attractor_kind='mean',
|
132 |
+
attractor_type='inv',
|
133 |
+
aug=True,
|
134 |
+
bin_centers_type='softplus',
|
135 |
+
bin_embedding_dim=128,
|
136 |
+
clip_grad=0.1,
|
137 |
+
dataset='nyu',
|
138 |
+
depth_anything=True,
|
139 |
+
distributed=True,
|
140 |
+
do_resize=False,
|
141 |
+
force_keep_ar=True,
|
142 |
+
freeze_midas_bn=True,
|
143 |
+
gpu='NULL',
|
144 |
+
img_size=[
|
145 |
+
392,
|
146 |
+
518,
|
147 |
+
],
|
148 |
+
inverse_midas=False,
|
149 |
+
log_images_every=0.1,
|
150 |
+
max_depth=80,
|
151 |
+
max_temp=50.0,
|
152 |
+
max_translation=100,
|
153 |
+
memory_efficient=True,
|
154 |
+
midas_model_type='vitb',
|
155 |
+
min_depth=0.001,
|
156 |
+
min_temp=0.0212,
|
157 |
+
model='zoedepth',
|
158 |
+
n_attractors=[
|
159 |
+
16,
|
160 |
+
8,
|
161 |
+
4,
|
162 |
+
1,
|
163 |
+
],
|
164 |
+
n_bins=64,
|
165 |
+
name='ZoeDepth',
|
166 |
+
notes='',
|
167 |
+
output_distribution='logbinomial',
|
168 |
+
prefetch=False,
|
169 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
170 |
+
print_losses=False,
|
171 |
+
project='ZoeDepth',
|
172 |
+
random_crop=False,
|
173 |
+
random_translate=False,
|
174 |
+
root='.',
|
175 |
+
save_dir='',
|
176 |
+
shared_dict='NULL',
|
177 |
+
tags='',
|
178 |
+
train_midas=True,
|
179 |
+
translate_prob=0.2,
|
180 |
+
type='DA-ZoeDepth',
|
181 |
+
uid='NULL',
|
182 |
+
use_amp=False,
|
183 |
+
use_pretrained_midas=True,
|
184 |
+
use_shared_dict=False,
|
185 |
+
validate_every=0.25,
|
186 |
+
version_name='v1',
|
187 |
+
workers=16),
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
patch_process_shape=(
|
191 |
+
392,
|
192 |
+
518,
|
193 |
+
),
|
194 |
+
sigloss=dict(type='SILogLoss'),
|
195 |
+
target='fine',
|
196 |
+
type='BaselinePretrain')
|
197 |
+
optim_wrapper = dict(
|
198 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
199 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
200 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
201 |
+
param_scheduler = dict(
|
202 |
+
base_momentum=0.85,
|
203 |
+
cycle_momentum=True,
|
204 |
+
div_factor=1,
|
205 |
+
final_div_factor=10000,
|
206 |
+
max_momentum=0.95,
|
207 |
+
pct_start=0.5,
|
208 |
+
three_phase=False)
|
209 |
+
project = 'patchfusion'
|
210 |
+
tags = [
|
211 |
+
'fine',
|
212 |
+
'da',
|
213 |
+
'vitb',
|
214 |
+
]
|
215 |
+
test_in_dataloader = dict(
|
216 |
+
batch_size=1,
|
217 |
+
dataset=dict(
|
218 |
+
data_root='./data/u4k',
|
219 |
+
max_depth=80,
|
220 |
+
min_depth=0.001,
|
221 |
+
mode='infer',
|
222 |
+
split='./data/u4k/splits/test.txt',
|
223 |
+
transform_cfg=dict(network_process_size=[
|
224 |
+
384,
|
225 |
+
512,
|
226 |
+
]),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=2)
|
229 |
+
test_out_dataloader = dict(
|
230 |
+
batch_size=1,
|
231 |
+
dataset=dict(
|
232 |
+
data_root='./data/u4k',
|
233 |
+
max_depth=80,
|
234 |
+
min_depth=0.001,
|
235 |
+
mode='infer',
|
236 |
+
split='./data/u4k/splits/test_out.txt',
|
237 |
+
transform_cfg=dict(network_process_size=[
|
238 |
+
384,
|
239 |
+
512,
|
240 |
+
]),
|
241 |
+
type='UnrealStereo4kDataset'),
|
242 |
+
num_workers=2)
|
243 |
+
train_cfg = dict(
|
244 |
+
eval_start=0,
|
245 |
+
log_interval=100,
|
246 |
+
max_epochs=24,
|
247 |
+
save_checkpoint_interval=24,
|
248 |
+
train_log_img_interval=500,
|
249 |
+
val_interval=2,
|
250 |
+
val_log_img_interval=50,
|
251 |
+
val_type='epoch_base')
|
252 |
+
train_dataloader = dict(
|
253 |
+
batch_size=4,
|
254 |
+
dataset=dict(
|
255 |
+
data_root='./data/u4k',
|
256 |
+
max_depth=80,
|
257 |
+
min_depth=0.001,
|
258 |
+
mode='train',
|
259 |
+
resize_mode='depth-anything',
|
260 |
+
split='./data/u4k/splits/train.txt',
|
261 |
+
transform_cfg=dict(
|
262 |
+
degree=1.0, network_process_size=[
|
263 |
+
392,
|
264 |
+
518,
|
265 |
+
], random_crop=True),
|
266 |
+
type='UnrealStereo4kDataset'),
|
267 |
+
num_workers=4)
|
268 |
+
val_dataloader = dict(
|
269 |
+
batch_size=1,
|
270 |
+
dataset=dict(
|
271 |
+
data_root='./data/u4k',
|
272 |
+
max_depth=80,
|
273 |
+
min_depth=0.001,
|
274 |
+
mode='infer',
|
275 |
+
resize_mode='depth-anything',
|
276 |
+
split='./data/u4k/splits/val.txt',
|
277 |
+
transform_cfg=dict(degree=1.0, network_process_size=[
|
278 |
+
392,
|
279 |
+
518,
|
280 |
+
]),
|
281 |
+
type='UnrealStereo4kDataset'),
|
282 |
+
num_workers=2)
|
283 |
+
work_dir = './work_dir/depthanything_vitb_u4k/fine_pretrain'
|
284 |
+
zoe_depth_config = dict(
|
285 |
+
attractor_alpha=1000,
|
286 |
+
attractor_gamma=2,
|
287 |
+
attractor_kind='mean',
|
288 |
+
attractor_type='inv',
|
289 |
+
aug=True,
|
290 |
+
bin_centers_type='softplus',
|
291 |
+
bin_embedding_dim=128,
|
292 |
+
clip_grad=0.1,
|
293 |
+
dataset='nyu',
|
294 |
+
depth_anything=True,
|
295 |
+
distributed=True,
|
296 |
+
do_resize=False,
|
297 |
+
force_keep_ar=True,
|
298 |
+
freeze_midas_bn=True,
|
299 |
+
gpu='NULL',
|
300 |
+
img_size=[
|
301 |
+
392,
|
302 |
+
518,
|
303 |
+
],
|
304 |
+
inverse_midas=False,
|
305 |
+
log_images_every=0.1,
|
306 |
+
max_depth=80,
|
307 |
+
max_temp=50.0,
|
308 |
+
max_translation=100,
|
309 |
+
memory_efficient=True,
|
310 |
+
midas_model_type='vitb',
|
311 |
+
min_depth=0.001,
|
312 |
+
min_temp=0.0212,
|
313 |
+
model='zoedepth',
|
314 |
+
n_attractors=[
|
315 |
+
16,
|
316 |
+
8,
|
317 |
+
4,
|
318 |
+
1,
|
319 |
+
],
|
320 |
+
n_bins=64,
|
321 |
+
name='ZoeDepth',
|
322 |
+
notes='',
|
323 |
+
output_distribution='logbinomial',
|
324 |
+
prefetch=False,
|
325 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
326 |
+
print_losses=False,
|
327 |
+
project='ZoeDepth',
|
328 |
+
random_crop=False,
|
329 |
+
random_translate=False,
|
330 |
+
root='.',
|
331 |
+
save_dir='',
|
332 |
+
shared_dict='NULL',
|
333 |
+
tags='',
|
334 |
+
train_midas=True,
|
335 |
+
translate_prob=0.2,
|
336 |
+
type='DA-ZoeDepth',
|
337 |
+
uid='NULL',
|
338 |
+
use_amp=False,
|
339 |
+
use_pretrained_midas=True,
|
340 |
+
use_shared_dict=False,
|
341 |
+
validate_every=0.25,
|
342 |
+
version_name='v1',
|
343 |
+
workers=16)
|
344 |
+
|
345 |
+
2024/03/15 15:30:45 - patchstitcher - INFO - Loading deepnet from local::./work_dir/DepthAnything_vitb.pt
|
346 |
+
2024/03/15 15:30:45 - patchstitcher - INFO - Current zoedepth.core.prep.resizer is <class 'torch.nn.modules.linear.Identity'>
|
347 |
+
2024/03/15 15:30:45 - patchstitcher - INFO - DistributedDataParallel(
|
348 |
+
(module): BaselinePretrain(
|
349 |
+
(fine_branch): ZoeDepth(
|
350 |
+
(core): DepthAnythingCore(
|
351 |
+
(core): DPT_DINOv2(
|
352 |
+
(pretrained): DinoVisionTransformer(
|
353 |
+
(patch_embed): PatchEmbed(
|
354 |
+
(proj): Conv2d(3, 768, kernel_size=(14, 14), stride=(14, 14))
|
355 |
+
(norm): Identity()
|
356 |
+
)
|
357 |
+
(blocks): ModuleList(
|
358 |
+
(0-11): 12 x NestedTensorBlock(
|
359 |
+
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
360 |
+
(attn): MemEffAttention(
|
361 |
+
(qkv): Linear(in_features=768, out_features=2304, bias=True)
|
362 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
363 |
+
(proj): Linear(in_features=768, out_features=768, bias=True)
|
364 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
365 |
+
)
|
366 |
+
(ls1): LayerScale()
|
367 |
+
(drop_path1): Identity()
|
368 |
+
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
369 |
+
(mlp): Mlp(
|
370 |
+
(fc1): Linear(in_features=768, out_features=3072, bias=True)
|
371 |
+
(act): GELU(approximate='none')
|
372 |
+
(fc2): Linear(in_features=3072, out_features=768, bias=True)
|
373 |
+
(drop): Dropout(p=0.0, inplace=False)
|
374 |
+
)
|
375 |
+
(ls2): LayerScale()
|
376 |
+
(drop_path2): Identity()
|
377 |
+
)
|
378 |
+
)
|
379 |
+
(norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
|
380 |
+
(head): Identity()
|
381 |
+
)
|
382 |
+
(depth_head): DPTHead(
|
383 |
+
(projects): ModuleList(
|
384 |
+
(0): Conv2d(768, 96, kernel_size=(1, 1), stride=(1, 1))
|
385 |
+
(1): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))
|
386 |
+
(2): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))
|
387 |
+
(3): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
|
388 |
+
)
|
389 |
+
(resize_layers): ModuleList(
|
390 |
+
(0): ConvTranspose2d(96, 96, kernel_size=(4, 4), stride=(4, 4))
|
391 |
+
(1): ConvTranspose2d(192, 192, kernel_size=(2, 2), stride=(2, 2))
|
392 |
+
(2): Identity()
|
393 |
+
(3): Conv2d(768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
394 |
+
)
|
395 |
+
(scratch): Module(
|
396 |
+
(layer1_rn): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
397 |
+
(layer2_rn): Conv2d(192, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
398 |
+
(layer3_rn): Conv2d(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
399 |
+
(layer4_rn): Conv2d(768, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
400 |
+
(refinenet1): FeatureFusionBlock(
|
401 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
402 |
+
(resConfUnit1): ResidualConvUnit(
|
403 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
404 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
405 |
+
(activation): ReLU()
|
406 |
+
(skip_add): FloatFunctional(
|
407 |
+
(activation_post_process): Identity()
|
408 |
+
)
|
409 |
+
)
|
410 |
+
(resConfUnit2): ResidualConvUnit(
|
411 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
412 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
413 |
+
(activation): ReLU()
|
414 |
+
(skip_add): FloatFunctional(
|
415 |
+
(activation_post_process): Identity()
|
416 |
+
)
|
417 |
+
)
|
418 |
+
(skip_add): FloatFunctional(
|
419 |
+
(activation_post_process): Identity()
|
420 |
+
)
|
421 |
+
)
|
422 |
+
(refinenet2): FeatureFusionBlock(
|
423 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
424 |
+
(resConfUnit1): ResidualConvUnit(
|
425 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
426 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
427 |
+
(activation): ReLU()
|
428 |
+
(skip_add): FloatFunctional(
|
429 |
+
(activation_post_process): Identity()
|
430 |
+
)
|
431 |
+
)
|
432 |
+
(resConfUnit2): ResidualConvUnit(
|
433 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
434 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
435 |
+
(activation): ReLU()
|
436 |
+
(skip_add): FloatFunctional(
|
437 |
+
(activation_post_process): Identity()
|
438 |
+
)
|
439 |
+
)
|
440 |
+
(skip_add): FloatFunctional(
|
441 |
+
(activation_post_process): Identity()
|
442 |
+
)
|
443 |
+
)
|
444 |
+
(refinenet3): FeatureFusionBlock(
|
445 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
446 |
+
(resConfUnit1): ResidualConvUnit(
|
447 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
448 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
449 |
+
(activation): ReLU()
|
450 |
+
(skip_add): FloatFunctional(
|
451 |
+
(activation_post_process): Identity()
|
452 |
+
)
|
453 |
+
)
|
454 |
+
(resConfUnit2): ResidualConvUnit(
|
455 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
456 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
457 |
+
(activation): ReLU()
|
458 |
+
(skip_add): FloatFunctional(
|
459 |
+
(activation_post_process): Identity()
|
460 |
+
)
|
461 |
+
)
|
462 |
+
(skip_add): FloatFunctional(
|
463 |
+
(activation_post_process): Identity()
|
464 |
+
)
|
465 |
+
)
|
466 |
+
(refinenet4): FeatureFusionBlock(
|
467 |
+
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
468 |
+
(resConfUnit1): ResidualConvUnit(
|
469 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
470 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
471 |
+
(activation): ReLU()
|
472 |
+
(skip_add): FloatFunctional(
|
473 |
+
(activation_post_process): Identity()
|
474 |
+
)
|
475 |
+
)
|
476 |
+
(resConfUnit2): ResidualConvUnit(
|
477 |
+
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
478 |
+
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
479 |
+
(activation): ReLU()
|
480 |
+
(skip_add): FloatFunctional(
|
481 |
+
(activation_post_process): Identity()
|
482 |
+
)
|
483 |
+
)
|
484 |
+
(skip_add): FloatFunctional(
|
485 |
+
(activation_post_process): Identity()
|
486 |
+
)
|
487 |
+
)
|
488 |
+
(output_conv1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
489 |
+
(output_conv2): Sequential(
|
490 |
+
(0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
491 |
+
(1): ReLU(inplace=True)
|
492 |
+
(2): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
|
493 |
+
(3): ReLU(inplace=True)
|
494 |
+
(4): Identity()
|
495 |
+
)
|
496 |
+
)
|
497 |
+
)
|
498 |
+
)
|
499 |
+
)
|
500 |
+
(conv2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
501 |
+
(seed_bin_regressor): SeedBinRegressorUnnormed(
|
502 |
+
(_net): Sequential(
|
503 |
+
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
|
504 |
+
(1): ReLU(inplace=True)
|
505 |
+
(2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
506 |
+
(3): Softplus(beta=1, threshold=20)
|
507 |
+
)
|
508 |
+
)
|
509 |
+
(seed_projector): Projector(
|
510 |
+
(_net): Sequential(
|
511 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
512 |
+
(1): ReLU(inplace=True)
|
513 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
514 |
+
)
|
515 |
+
)
|
516 |
+
(projectors): ModuleList(
|
517 |
+
(0-3): 4 x Projector(
|
518 |
+
(_net): Sequential(
|
519 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
520 |
+
(1): ReLU(inplace=True)
|
521 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
522 |
+
)
|
523 |
+
)
|
524 |
+
)
|
525 |
+
(attractors): ModuleList(
|
526 |
+
(0): AttractorLayerUnnormed(
|
527 |
+
(_net): Sequential(
|
528 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
529 |
+
(1): ReLU(inplace=True)
|
530 |
+
(2): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
|
531 |
+
(3): Softplus(beta=1, threshold=20)
|
532 |
+
)
|
533 |
+
)
|
534 |
+
(1): AttractorLayerUnnormed(
|
535 |
+
(_net): Sequential(
|
536 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
537 |
+
(1): ReLU(inplace=True)
|
538 |
+
(2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
|
539 |
+
(3): Softplus(beta=1, threshold=20)
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(2): AttractorLayerUnnormed(
|
543 |
+
(_net): Sequential(
|
544 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
545 |
+
(1): ReLU(inplace=True)
|
546 |
+
(2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
|
547 |
+
(3): Softplus(beta=1, threshold=20)
|
548 |
+
)
|
549 |
+
)
|
550 |
+
(3): AttractorLayerUnnormed(
|
551 |
+
(_net): Sequential(
|
552 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
553 |
+
(1): ReLU(inplace=True)
|
554 |
+
(2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
|
555 |
+
(3): Softplus(beta=1, threshold=20)
|
556 |
+
)
|
557 |
+
)
|
558 |
+
)
|
559 |
+
(conditional_log_binomial): ConditionalLogBinomial(
|
560 |
+
(log_binomial_transform): LogBinomial()
|
561 |
+
(mlp): Sequential(
|
562 |
+
(0): Conv2d(161, 80, kernel_size=(1, 1), stride=(1, 1))
|
563 |
+
(1): GELU(approximate='none')
|
564 |
+
(2): Conv2d(80, 4, kernel_size=(1, 1), stride=(1, 1))
|
565 |
+
(3): Softplus(beta=1, threshold=20)
|
566 |
+
)
|
567 |
+
)
|
568 |
+
)
|
569 |
+
(sigloss): SILogLoss()
|
570 |
+
)
|
571 |
+
)
|
572 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - successfully init trainer
|
573 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.cls_token
|
574 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.pos_embed
|
575 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.mask_token
|
576 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.weight
|
577 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.bias
|
578 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.weight
|
579 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.bias
|
580 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.weight
|
581 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.bias
|
582 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.weight
|
583 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.bias
|
584 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls1.gamma
|
585 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.weight
|
586 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.bias
|
587 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.weight
|
588 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.bias
|
589 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.weight
|
590 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.bias
|
591 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls2.gamma
|
592 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.weight
|
593 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.bias
|
594 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.weight
|
595 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.bias
|
596 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.weight
|
597 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.bias
|
598 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls1.gamma
|
599 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.weight
|
600 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.bias
|
601 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.weight
|
602 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.bias
|
603 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.weight
|
604 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.bias
|
605 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls2.gamma
|
606 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.weight
|
607 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.bias
|
608 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.weight
|
609 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.bias
|
610 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.weight
|
611 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.bias
|
612 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls1.gamma
|
613 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.weight
|
614 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.bias
|
615 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.weight
|
616 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.bias
|
617 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.weight
|
618 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.bias
|
619 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls2.gamma
|
620 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.weight
|
621 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.bias
|
622 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.weight
|
623 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.bias
|
624 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.weight
|
625 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.bias
|
626 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls1.gamma
|
627 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.weight
|
628 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.bias
|
629 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.weight
|
630 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.bias
|
631 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.weight
|
632 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.bias
|
633 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls2.gamma
|
634 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.weight
|
635 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.bias
|
636 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.weight
|
637 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.bias
|
638 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.weight
|
639 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.bias
|
640 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls1.gamma
|
641 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.weight
|
642 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.bias
|
643 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.weight
|
644 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.bias
|
645 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.weight
|
646 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.bias
|
647 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls2.gamma
|
648 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.weight
|
649 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.bias
|
650 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.weight
|
651 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.bias
|
652 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.weight
|
653 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.bias
|
654 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls1.gamma
|
655 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.weight
|
656 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.bias
|
657 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.weight
|
658 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.bias
|
659 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.weight
|
660 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.bias
|
661 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls2.gamma
|
662 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.weight
|
663 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.bias
|
664 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.weight
|
665 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.bias
|
666 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.weight
|
667 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.bias
|
668 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls1.gamma
|
669 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.weight
|
670 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.bias
|
671 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.weight
|
672 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.bias
|
673 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.weight
|
674 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.bias
|
675 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls2.gamma
|
676 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.weight
|
677 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.bias
|
678 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.weight
|
679 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.bias
|
680 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.weight
|
681 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.bias
|
682 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls1.gamma
|
683 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.weight
|
684 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.bias
|
685 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.weight
|
686 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.bias
|
687 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.weight
|
688 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.bias
|
689 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls2.gamma
|
690 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.weight
|
691 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.bias
|
692 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.weight
|
693 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.bias
|
694 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.weight
|
695 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.bias
|
696 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls1.gamma
|
697 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.weight
|
698 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.bias
|
699 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.weight
|
700 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.bias
|
701 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.weight
|
702 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.bias
|
703 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls2.gamma
|
704 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.weight
|
705 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.bias
|
706 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.weight
|
707 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.bias
|
708 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.weight
|
709 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.bias
|
710 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls1.gamma
|
711 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.weight
|
712 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.bias
|
713 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.weight
|
714 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.bias
|
715 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.weight
|
716 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.bias
|
717 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls2.gamma
|
718 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.weight
|
719 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.bias
|
720 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.weight
|
721 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.bias
|
722 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.weight
|
723 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.bias
|
724 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls1.gamma
|
725 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.weight
|
726 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.bias
|
727 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.weight
|
728 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.bias
|
729 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.weight
|
730 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.bias
|
731 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls2.gamma
|
732 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.weight
|
733 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.bias
|
734 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.weight
|
735 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.bias
|
736 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.weight
|
737 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.bias
|
738 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls1.gamma
|
739 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.weight
|
740 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.bias
|
741 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.weight
|
742 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.bias
|
743 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.weight
|
744 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.bias
|
745 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls2.gamma
|
746 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.weight
|
747 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.bias
|
748 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.weight
|
749 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.bias
|
750 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.weight
|
751 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.bias
|
752 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.weight
|
753 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.bias
|
754 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.weight
|
755 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.bias
|
756 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.weight
|
757 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.bias
|
758 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.weight
|
759 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.bias
|
760 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.weight
|
761 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.bias
|
762 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer1_rn.weight
|
763 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer2_rn.weight
|
764 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer3_rn.weight
|
765 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer4_rn.weight
|
766 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.weight
|
767 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.bias
|
768 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.weight
|
769 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.bias
|
770 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.weight
|
771 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.bias
|
772 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.weight
|
773 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.bias
|
774 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.weight
|
775 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.bias
|
776 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.weight
|
777 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.bias
|
778 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.weight
|
779 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.bias
|
780 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.weight
|
781 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.bias
|
782 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.weight
|
783 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.bias
|
784 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.weight
|
785 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.bias
|
786 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.weight
|
787 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.bias
|
788 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.weight
|
789 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.bias
|
790 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.weight
|
791 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.bias
|
792 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.weight
|
793 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.bias
|
794 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.weight
|
795 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.bias
|
796 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.weight
|
797 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.bias
|
798 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.weight
|
799 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.bias
|
800 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.weight
|
801 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.bias
|
802 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.weight
|
803 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.bias
|
804 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.weight
|
805 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.bias
|
806 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.weight
|
807 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.bias
|
808 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.weight
|
809 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.bias
|
810 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.weight
|
811 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.bias
|
812 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conv2.weight
|
813 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conv2.bias
|
814 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.weight
|
815 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.bias
|
816 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.weight
|
817 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.bias
|
818 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.weight
|
819 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.bias
|
820 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.weight
|
821 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.bias
|
822 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.weight
|
823 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.bias
|
824 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.weight
|
825 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.bias
|
826 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.weight
|
827 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.bias
|
828 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.weight
|
829 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.bias
|
830 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.weight
|
831 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.bias
|
832 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.weight
|
833 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.bias
|
834 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.weight
|
835 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.bias
|
836 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.weight
|
837 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.bias
|
838 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.weight
|
839 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.bias
|
840 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.weight
|
841 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.bias
|
842 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.weight
|
843 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.bias
|
844 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.weight
|
845 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.bias
|
846 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.weight
|
847 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.bias
|
848 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.weight
|
849 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.bias
|
850 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.weight
|
851 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.bias
|
852 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.weight
|
853 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.bias
|
854 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.weight
|
855 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.bias
|
856 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.weight
|
857 |
+
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.bias
|
858 |
+
2024/03/15 15:33:25 - patchstitcher - INFO - Epoch: [01/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.288588523864746 - fine_loss: 2.288588523864746
|
859 |
+
2024/03/15 15:35:13 - patchstitcher - INFO - Epoch: [01/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.749260425567627 - fine_loss: 1.749260425567627
|
860 |
+
2024/03/15 15:36:58 - patchstitcher - INFO - Epoch: [01/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.603142499923706 - fine_loss: 2.603142499923706
|
861 |
+
2024/03/15 15:38:59 - patchstitcher - INFO - Epoch: [01/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 3.0235860347747803 - fine_loss: 3.0235860347747803
|
862 |
+
2024/03/15 15:42:38 - patchstitcher - INFO - Epoch: [02/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.2628891468048096 - fine_loss: 2.2628891468048096
|
863 |
+
2024/03/15 15:44:44 - patchstitcher - INFO - Epoch: [02/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.2125635147094727 - fine_loss: 2.2125635147094727
|
864 |
+
2024/03/15 15:46:44 - patchstitcher - INFO - Epoch: [02/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.884977102279663 - fine_loss: 1.884977102279663
|
865 |
+
2024/03/15 15:48:46 - patchstitcher - INFO - Epoch: [02/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 3.667808771133423 - fine_loss: 3.667808771133423
|
866 |
+
2024/03/15 15:50:43 - patchstitcher - INFO - Evaluation Summary:
|
867 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
868 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
869 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
870 |
+
| 0.7653929 | 0.9569647 | 0.9891034 | 0.1631364 | 2.063872 | 0.0675193 | 0.2015772 | 17.5721867 | 0.3284417 | 1.5396647 |
|
871 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
872 |
+
2024/03/15 15:52:52 - patchstitcher - INFO - Epoch: [03/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.9002115726470947 - fine_loss: 1.9002115726470947
|
873 |
+
2024/03/15 15:54:51 - patchstitcher - INFO - Epoch: [03/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.533200979232788 - fine_loss: 1.533200979232788
|
874 |
+
2024/03/15 15:56:53 - patchstitcher - INFO - Epoch: [03/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3708069324493408 - fine_loss: 1.3708069324493408
|
875 |
+
2024/03/15 15:58:56 - patchstitcher - INFO - Epoch: [03/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.3536834716796875 - fine_loss: 1.3536834716796875
|
876 |
+
2024/03/15 16:02:35 - patchstitcher - INFO - Epoch: [04/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4067535400390625 - fine_loss: 1.4067535400390625
|
877 |
+
2024/03/15 16:04:38 - patchstitcher - INFO - Epoch: [04/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.571197509765625 - fine_loss: 1.571197509765625
|
878 |
+
2024/03/15 16:06:40 - patchstitcher - INFO - Epoch: [04/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.9749035835266113 - fine_loss: 2.9749035835266113
|
879 |
+
2024/03/15 16:08:48 - patchstitcher - INFO - Epoch: [04/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.893333911895752 - fine_loss: 0.893333911895752
|
880 |
+
2024/03/15 16:10:40 - patchstitcher - INFO - Evaluation Summary:
|
881 |
+
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
882 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
883 |
+
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
884 |
+
| 0.8439181 | 0.9733375 | 0.992747 | 0.1316369 | 1.8230734 | 0.0558847 | 0.171333 | 15.4284363 | 0.2575101 | 1.3799866 |
|
885 |
+
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
886 |
+
2024/03/15 16:12:51 - patchstitcher - INFO - Epoch: [05/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5204694271087646 - fine_loss: 1.5204694271087646
|
887 |
+
2024/03/15 16:14:53 - patchstitcher - INFO - Epoch: [05/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0538222789764404 - fine_loss: 1.0538222789764404
|
888 |
+
2024/03/15 16:17:00 - patchstitcher - INFO - Epoch: [05/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.246050477027893 - fine_loss: 1.246050477027893
|
889 |
+
2024/03/15 16:19:04 - patchstitcher - INFO - Epoch: [05/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4139764308929443 - fine_loss: 1.4139764308929443
|
890 |
+
2024/03/15 16:22:40 - patchstitcher - INFO - Epoch: [06/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5990095138549805 - fine_loss: 1.5990095138549805
|
891 |
+
2024/03/15 16:24:45 - patchstitcher - INFO - Epoch: [06/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4719877243041992 - fine_loss: 1.4719877243041992
|
892 |
+
2024/03/15 16:26:49 - patchstitcher - INFO - Epoch: [06/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.998321533203125 - fine_loss: 0.998321533203125
|
893 |
+
2024/03/15 16:28:52 - patchstitcher - INFO - Epoch: [06/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2637615203857422 - fine_loss: 1.2637615203857422
|
894 |
+
2024/03/15 16:30:46 - patchstitcher - INFO - Evaluation Summary:
|
895 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
896 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
897 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
898 |
+
| 0.8831826 | 0.9846013 | 0.9953048 | 0.1145366 | 1.6448599 | 0.0488564 | 0.1510406 | 14.0402038 | 0.2199031 | 1.3085128 |
|
899 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
900 |
+
2024/03/15 16:32:53 - patchstitcher - INFO - Epoch: [07/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.65132737159729 - fine_loss: 1.65132737159729
|
901 |
+
2024/03/15 16:34:56 - patchstitcher - INFO - Epoch: [07/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4322144985198975 - fine_loss: 1.4322144985198975
|
902 |
+
2024/03/15 16:37:04 - patchstitcher - INFO - Epoch: [07/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.034339427947998 - fine_loss: 1.034339427947998
|
903 |
+
2024/03/15 16:39:08 - patchstitcher - INFO - Epoch: [07/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0732086896896362 - fine_loss: 1.0732086896896362
|
904 |
+
2024/03/15 16:42:43 - patchstitcher - INFO - Epoch: [08/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3489086627960205 - fine_loss: 1.3489086627960205
|
905 |
+
2024/03/15 16:44:47 - patchstitcher - INFO - Epoch: [08/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4356486797332764 - fine_loss: 1.4356486797332764
|
906 |
+
2024/03/15 16:46:50 - patchstitcher - INFO - Epoch: [08/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6865524649620056 - fine_loss: 0.6865524649620056
|
907 |
+
2024/03/15 16:48:50 - patchstitcher - INFO - Epoch: [08/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4590085744857788 - fine_loss: 1.4590085744857788
|
908 |
+
2024/03/15 16:50:41 - patchstitcher - INFO - Evaluation Summary:
|
909 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
910 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
911 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
912 |
+
| 0.8921932 | 0.9874671 | 0.9972081 | 0.1083586 | 1.6257898 | 0.0457595 | 0.142043 | 12.7745355 | 0.2076856 | 1.2743567 |
|
913 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
914 |
+
2024/03/15 16:52:44 - patchstitcher - INFO - Epoch: [09/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.008254885673523 - fine_loss: 1.008254885673523
|
915 |
+
2024/03/15 16:54:54 - patchstitcher - INFO - Epoch: [09/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8210620880126953 - fine_loss: 0.8210620880126953
|
916 |
+
2024/03/15 16:56:55 - patchstitcher - INFO - Epoch: [09/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.8681334257125854 - fine_loss: 1.8681334257125854
|
917 |
+
2024/03/15 16:58:59 - patchstitcher - INFO - Epoch: [09/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9568914771080017 - fine_loss: 0.9568914771080017
|
918 |
+
2024/03/15 17:02:34 - patchstitcher - INFO - Epoch: [10/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5452194213867188 - fine_loss: 1.5452194213867188
|
919 |
+
2024/03/15 17:04:40 - patchstitcher - INFO - Epoch: [10/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9237810373306274 - fine_loss: 0.9237810373306274
|
920 |
+
2024/03/15 17:06:43 - patchstitcher - INFO - Epoch: [10/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.4192367792129517 - fine_loss: 1.4192367792129517
|
921 |
+
2024/03/15 17:08:47 - patchstitcher - INFO - Epoch: [10/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.1616711616516113 - fine_loss: 1.1616711616516113
|
922 |
+
2024/03/15 17:10:40 - patchstitcher - INFO - Evaluation Summary:
|
923 |
+
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
924 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
925 |
+
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
926 |
+
| 0.9095374 | 0.9878494 | 0.996491 | 0.1000458 | 1.529536 | 0.0445519 | 0.1377915 | 12.2980782 | 0.1741764 | 1.1720957 |
|
927 |
+
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
928 |
+
2024/03/15 17:12:48 - patchstitcher - INFO - Epoch: [11/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2545241117477417 - fine_loss: 1.2545241117477417
|
929 |
+
2024/03/15 17:14:52 - patchstitcher - INFO - Epoch: [11/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9477699398994446 - fine_loss: 0.9477699398994446
|
930 |
+
2024/03/15 17:16:59 - patchstitcher - INFO - Epoch: [11/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3806159496307373 - fine_loss: 1.3806159496307373
|
931 |
+
2024/03/15 17:19:02 - patchstitcher - INFO - Epoch: [11/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.12031888961792 - fine_loss: 1.12031888961792
|
932 |
+
2024/03/15 17:22:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9633316993713379 - fine_loss: 0.9633316993713379
|
933 |
+
2024/03/15 17:24:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9473192691802979 - fine_loss: 0.9473192691802979
|
934 |
+
2024/03/15 17:26:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8891739845275879 - fine_loss: 0.8891739845275879
|
935 |
+
2024/03/15 17:28:46 - patchstitcher - INFO - Epoch: [12/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9305822849273682 - fine_loss: 0.9305822849273682
|
936 |
+
2024/03/15 17:30:43 - patchstitcher - INFO - Evaluation Summary:
|
937 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
938 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
939 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
940 |
+
| 0.9285209 | 0.9902661 | 0.9963124 | 0.0922186 | 1.4988106 | 0.0394503 | 0.1265562 | 11.929424 | 0.1792194 | 1.2142439 |
|
941 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
942 |
+
2024/03/15 17:32:52 - patchstitcher - INFO - Epoch: [13/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.26497220993042 - fine_loss: 1.26497220993042
|
943 |
+
2024/03/15 17:35:00 - patchstitcher - INFO - Epoch: [13/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.580217957496643 - fine_loss: 1.580217957496643
|
944 |
+
2024/03/15 17:36:59 - patchstitcher - INFO - Epoch: [13/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6395942568778992 - fine_loss: 0.6395942568778992
|
945 |
+
2024/03/15 17:39:02 - patchstitcher - INFO - Epoch: [13/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.32594698667526245 - fine_loss: 0.32594698667526245
|
946 |
+
2024/03/15 17:42:34 - patchstitcher - INFO - Epoch: [14/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.924031674861908 - fine_loss: 0.924031674861908
|
947 |
+
2024/03/15 17:44:36 - patchstitcher - INFO - Epoch: [14/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.985018253326416 - fine_loss: 0.985018253326416
|
948 |
+
2024/03/15 17:46:38 - patchstitcher - INFO - Epoch: [14/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0442320108413696 - fine_loss: 1.0442320108413696
|
949 |
+
2024/03/15 17:48:43 - patchstitcher - INFO - Epoch: [14/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5068702101707458 - fine_loss: 0.5068702101707458
|
950 |
+
2024/03/15 17:50:33 - patchstitcher - INFO - Evaluation Summary:
|
951 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
952 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
953 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
954 |
+
| 0.9381619 | 0.9895476 | 0.9972216 | 0.0913334 | 1.5578288 | 0.0391697 | 0.1243245 | 11.1463653 | 0.1706981 | 1.1217431 |
|
955 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
956 |
+
2024/03/15 17:52:46 - patchstitcher - INFO - Epoch: [15/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1108862161636353 - fine_loss: 1.1108862161636353
|
957 |
+
2024/03/15 17:54:52 - patchstitcher - INFO - Epoch: [15/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9237959980964661 - fine_loss: 0.9237959980964661
|
958 |
+
2024/03/15 17:56:56 - patchstitcher - INFO - Epoch: [15/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.5644421577453613 - fine_loss: 1.5644421577453613
|
959 |
+
2024/03/15 17:58:54 - patchstitcher - INFO - Epoch: [15/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7902756929397583 - fine_loss: 0.7902756929397583
|
960 |
+
2024/03/15 18:02:26 - patchstitcher - INFO - Epoch: [16/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.966326117515564 - fine_loss: 0.966326117515564
|
961 |
+
2024/03/15 18:04:32 - patchstitcher - INFO - Epoch: [16/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9776898622512817 - fine_loss: 0.9776898622512817
|
962 |
+
2024/03/15 18:06:33 - patchstitcher - INFO - Epoch: [16/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6681317090988159 - fine_loss: 0.6681317090988159
|
963 |
+
2024/03/15 18:08:34 - patchstitcher - INFO - Epoch: [16/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.80037522315979 - fine_loss: 0.80037522315979
|
964 |
+
2024/03/15 18:10:20 - patchstitcher - INFO - Evaluation Summary:
|
965 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
966 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
967 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
968 |
+
| 0.9538666 | 0.9917138 | 0.9972104 | 0.0811061 | 1.3823568 | 0.0351258 | 0.1140013 | 10.5376763 | 0.1382621 | 1.0577048 |
|
969 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
970 |
+
2024/03/15 18:12:28 - patchstitcher - INFO - Epoch: [17/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.147787094116211 - fine_loss: 1.147787094116211
|
971 |
+
2024/03/15 18:14:30 - patchstitcher - INFO - Epoch: [17/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.7300316691398621 - fine_loss: 0.7300316691398621
|
972 |
+
2024/03/15 18:16:37 - patchstitcher - INFO - Epoch: [17/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7750428318977356 - fine_loss: 0.7750428318977356
|
973 |
+
2024/03/15 18:18:37 - patchstitcher - INFO - Epoch: [17/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.50600266456604 - fine_loss: 1.50600266456604
|
974 |
+
2024/03/15 18:22:20 - patchstitcher - INFO - Epoch: [18/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8911293745040894 - fine_loss: 0.8911293745040894
|
975 |
+
2024/03/15 18:24:18 - patchstitcher - INFO - Epoch: [18/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5605521202087402 - fine_loss: 0.5605521202087402
|
976 |
+
2024/03/15 18:26:21 - patchstitcher - INFO - Epoch: [18/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6763710975646973 - fine_loss: 1.6763710975646973
|
977 |
+
2024/03/15 18:28:20 - patchstitcher - INFO - Epoch: [18/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6500707864761353 - fine_loss: 0.6500707864761353
|
978 |
+
2024/03/15 18:30:14 - patchstitcher - INFO - Evaluation Summary:
|
979 |
+
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
980 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
981 |
+
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
982 |
+
| 0.9562948 | 0.990871 | 0.9974688 | 0.0761721 | 1.3729287 | 0.0331131 | 0.1092103 | 10.1530306 | 0.1366973 | 1.0216396 |
|
983 |
+
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
984 |
+
2024/03/15 18:32:23 - patchstitcher - INFO - Epoch: [19/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5755664110183716 - fine_loss: 0.5755664110183716
|
985 |
+
2024/03/15 18:34:28 - patchstitcher - INFO - Epoch: [19/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.2044012546539307 - fine_loss: 1.2044012546539307
|
986 |
+
2024/03/15 18:36:33 - patchstitcher - INFO - Epoch: [19/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.266536831855774 - fine_loss: 1.266536831855774
|
987 |
+
2024/03/15 18:38:35 - patchstitcher - INFO - Epoch: [19/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7211558818817139 - fine_loss: 0.7211558818817139
|
988 |
+
2024/03/15 18:42:13 - patchstitcher - INFO - Epoch: [20/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6136915683746338 - fine_loss: 0.6136915683746338
|
989 |
+
2024/03/15 18:44:12 - patchstitcher - INFO - Epoch: [20/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.4747104048728943 - fine_loss: 0.4747104048728943
|
990 |
+
2024/03/15 18:46:16 - patchstitcher - INFO - Epoch: [20/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5850560069084167 - fine_loss: 0.5850560069084167
|
991 |
+
2024/03/15 18:48:21 - patchstitcher - INFO - Epoch: [20/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.37204447388648987 - fine_loss: 0.37204447388648987
|
992 |
+
2024/03/15 18:50:16 - patchstitcher - INFO - Evaluation Summary:
|
993 |
+
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
994 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
995 |
+
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
996 |
+
| 0.9645657 | 0.9920502 | 0.997654 | 0.0686085 | 1.2732928 | 0.0299144 | 0.1009926 | 9.6382305 | 0.1200509 | 0.993343 |
|
997 |
+
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
998 |
+
2024/03/15 18:52:27 - patchstitcher - INFO - Epoch: [21/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6047840714454651 - fine_loss: 0.6047840714454651
|
999 |
+
2024/03/15 18:54:31 - patchstitcher - INFO - Epoch: [21/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5551916360855103 - fine_loss: 0.5551916360855103
|
1000 |
+
2024/03/15 18:56:37 - patchstitcher - INFO - Epoch: [21/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.32560303807258606 - fine_loss: 0.32560303807258606
|
1001 |
+
2024/03/15 18:58:40 - patchstitcher - INFO - Epoch: [21/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.7431879043579102 - fine_loss: 1.7431879043579102
|
1002 |
+
2024/03/15 19:02:20 - patchstitcher - INFO - Epoch: [22/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7936936020851135 - fine_loss: 0.7936936020851135
|
1003 |
+
2024/03/15 19:04:21 - patchstitcher - INFO - Epoch: [22/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6791415214538574 - fine_loss: 0.6791415214538574
|
1004 |
+
2024/03/15 19:06:23 - patchstitcher - INFO - Epoch: [22/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6265323758125305 - fine_loss: 0.6265323758125305
|
1005 |
+
2024/03/15 19:08:25 - patchstitcher - INFO - Epoch: [22/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6945874691009521 - fine_loss: 0.6945874691009521
|
1006 |
+
2024/03/15 19:10:17 - patchstitcher - INFO - Evaluation Summary:
|
1007 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1008 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1009 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1010 |
+
| 0.9671118 | 0.9931541 | 0.9976758 | 0.0652155 | 1.2549019 | 0.0282474 | 0.0973396 | 9.2669667 | 0.1172386 | 0.9884787 |
|
1011 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1012 |
+
2024/03/15 19:12:25 - patchstitcher - INFO - Epoch: [23/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2996392250061035 - fine_loss: 1.2996392250061035
|
1013 |
+
2024/03/15 19:14:26 - patchstitcher - INFO - Epoch: [23/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.674423098564148 - fine_loss: 0.674423098564148
|
1014 |
+
2024/03/15 19:16:29 - patchstitcher - INFO - Epoch: [23/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.0330402851104736 - fine_loss: 2.0330402851104736
|
1015 |
+
2024/03/15 19:18:34 - patchstitcher - INFO - Epoch: [23/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.1583242416381836 - fine_loss: 1.1583242416381836
|
1016 |
+
2024/03/15 19:22:12 - patchstitcher - INFO - Epoch: [24/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8227792978286743 - fine_loss: 0.8227792978286743
|
1017 |
+
2024/03/15 19:24:12 - patchstitcher - INFO - Epoch: [24/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6849284172058105 - fine_loss: 0.6849284172058105
|
1018 |
+
2024/03/15 19:26:14 - patchstitcher - INFO - Epoch: [24/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5954287648200989 - fine_loss: 0.5954287648200989
|
1019 |
+
2024/03/15 19:28:20 - patchstitcher - INFO - Epoch: [24/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.38687634468078613 - fine_loss: 0.38687634468078613
|
1020 |
+
2024/03/15 19:30:07 - patchstitcher - INFO - Evaluation Summary:
|
1021 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
|
1022 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1023 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
|
1024 |
+
| 0.9687062 | 0.9931654 | 0.9976169 | 0.0635503 | 1.2467909 | 0.0277027 | 0.0958232 | 9.191893 | 0.1155029 | 0.9803023 |
|
1025 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
|
1026 |
+
2024/03/15 19:30:07 - patchstitcher - INFO - Saving ckp, but use the inner get_save_dict fuction to get model_dict
|
1027 |
+
2024/03/15 19:30:07 - patchstitcher - INFO - For saving space. Would you like to save base model several times? :>
|
1028 |
+
2024/03/15 19:30:08 - patchstitcher - INFO - save checkpoint_24.pth at ./work_dir/depthanything_vitb_u4k/fine_pretrain
|
depthanything_vitb_u4k/fine_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2b0ca89e141a9a52626174d614584fccb47e140090a495cc5822803dac7018c
|
3 |
+
size 1171453994
|
depthanything_vitb_u4k/fine_pretrain/config.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'fine_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vitb',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vitb',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
patch_process_shape=(
|
149 |
+
392,
|
150 |
+
518,
|
151 |
+
),
|
152 |
+
sigloss=dict(type='SILogLoss'),
|
153 |
+
target='fine',
|
154 |
+
type='BaselinePretrain')
|
155 |
+
optim_wrapper = dict(
|
156 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
157 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
158 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
159 |
+
param_scheduler = dict(
|
160 |
+
base_momentum=0.85,
|
161 |
+
cycle_momentum=True,
|
162 |
+
div_factor=1,
|
163 |
+
final_div_factor=10000,
|
164 |
+
max_momentum=0.95,
|
165 |
+
pct_start=0.5,
|
166 |
+
three_phase=False)
|
167 |
+
project = 'patchfusion'
|
168 |
+
resume = False
|
169 |
+
tags = [
|
170 |
+
'fine',
|
171 |
+
'da',
|
172 |
+
'vitb',
|
173 |
+
]
|
174 |
+
test_in_dataloader = dict(
|
175 |
+
batch_size=1,
|
176 |
+
dataset=dict(
|
177 |
+
data_root='./data/u4k',
|
178 |
+
max_depth=80,
|
179 |
+
min_depth=0.001,
|
180 |
+
mode='infer',
|
181 |
+
split='./data/u4k/splits/test.txt',
|
182 |
+
transform_cfg=dict(network_process_size=[
|
183 |
+
384,
|
184 |
+
512,
|
185 |
+
]),
|
186 |
+
type='UnrealStereo4kDataset'),
|
187 |
+
num_workers=2)
|
188 |
+
test_out_dataloader = dict(
|
189 |
+
batch_size=1,
|
190 |
+
dataset=dict(
|
191 |
+
data_root='./data/u4k',
|
192 |
+
max_depth=80,
|
193 |
+
min_depth=0.001,
|
194 |
+
mode='infer',
|
195 |
+
split='./data/u4k/splits/test_out.txt',
|
196 |
+
transform_cfg=dict(network_process_size=[
|
197 |
+
384,
|
198 |
+
512,
|
199 |
+
]),
|
200 |
+
type='UnrealStereo4kDataset'),
|
201 |
+
num_workers=2)
|
202 |
+
train_cfg = dict(
|
203 |
+
eval_start=0,
|
204 |
+
log_interval=100,
|
205 |
+
max_epochs=24,
|
206 |
+
save_checkpoint_interval=24,
|
207 |
+
train_log_img_interval=500,
|
208 |
+
val_interval=2,
|
209 |
+
val_log_img_interval=50,
|
210 |
+
val_type='epoch_base')
|
211 |
+
train_dataloader = dict(
|
212 |
+
batch_size=4,
|
213 |
+
dataset=dict(
|
214 |
+
data_root='./data/u4k',
|
215 |
+
max_depth=80,
|
216 |
+
min_depth=0.001,
|
217 |
+
mode='train',
|
218 |
+
resize_mode='depth-anything',
|
219 |
+
split='./data/u4k/splits/train.txt',
|
220 |
+
transform_cfg=dict(
|
221 |
+
degree=1.0,
|
222 |
+
network_process_size=[
|
223 |
+
392,
|
224 |
+
518,
|
225 |
+
],
|
226 |
+
random_crop=True,
|
227 |
+
random_crop_size=(
|
228 |
+
540,
|
229 |
+
960,
|
230 |
+
)),
|
231 |
+
type='UnrealStereo4kDataset'),
|
232 |
+
num_workers=4)
|
233 |
+
val_dataloader = dict(
|
234 |
+
batch_size=1,
|
235 |
+
dataset=dict(
|
236 |
+
data_root='./data/u4k',
|
237 |
+
max_depth=80,
|
238 |
+
min_depth=0.001,
|
239 |
+
mode='infer',
|
240 |
+
resize_mode='depth-anything',
|
241 |
+
split='./data/u4k/splits/val.txt',
|
242 |
+
transform_cfg=dict(
|
243 |
+
degree=1.0,
|
244 |
+
network_process_size=[
|
245 |
+
392,
|
246 |
+
518,
|
247 |
+
],
|
248 |
+
random_crop_size=(
|
249 |
+
540,
|
250 |
+
960,
|
251 |
+
)),
|
252 |
+
type='UnrealStereo4kDataset'),
|
253 |
+
num_workers=2)
|
254 |
+
work_dir = './work_dir/depthanything_vitb_u4k/fine_pretrain'
|
255 |
+
zoe_depth_config = dict(
|
256 |
+
attractor_alpha=1000,
|
257 |
+
attractor_gamma=2,
|
258 |
+
attractor_kind='mean',
|
259 |
+
attractor_type='inv',
|
260 |
+
aug=True,
|
261 |
+
bin_centers_type='softplus',
|
262 |
+
bin_embedding_dim=128,
|
263 |
+
clip_grad=0.1,
|
264 |
+
dataset='nyu',
|
265 |
+
depth_anything=True,
|
266 |
+
distributed=True,
|
267 |
+
do_resize=False,
|
268 |
+
force_keep_ar=True,
|
269 |
+
freeze_midas_bn=True,
|
270 |
+
gpu='NULL',
|
271 |
+
img_size=[
|
272 |
+
392,
|
273 |
+
518,
|
274 |
+
],
|
275 |
+
inverse_midas=False,
|
276 |
+
log_images_every=0.1,
|
277 |
+
max_depth=80,
|
278 |
+
max_temp=50.0,
|
279 |
+
max_translation=100,
|
280 |
+
memory_efficient=True,
|
281 |
+
midas_model_type='vitb',
|
282 |
+
min_depth=0.001,
|
283 |
+
min_temp=0.0212,
|
284 |
+
model='zoedepth',
|
285 |
+
n_attractors=[
|
286 |
+
16,
|
287 |
+
8,
|
288 |
+
4,
|
289 |
+
1,
|
290 |
+
],
|
291 |
+
n_bins=64,
|
292 |
+
name='ZoeDepth',
|
293 |
+
notes='',
|
294 |
+
output_distribution='logbinomial',
|
295 |
+
prefetch=False,
|
296 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
297 |
+
print_losses=False,
|
298 |
+
project='ZoeDepth',
|
299 |
+
random_crop=False,
|
300 |
+
random_translate=False,
|
301 |
+
root='.',
|
302 |
+
save_dir='',
|
303 |
+
shared_dict='NULL',
|
304 |
+
tags='',
|
305 |
+
train_midas=True,
|
306 |
+
translate_prob=0.2,
|
307 |
+
type='DA-ZoeDepth',
|
308 |
+
uid='NULL',
|
309 |
+
use_amp=False,
|
310 |
+
use_pretrained_midas=True,
|
311 |
+
use_shared_dict=False,
|
312 |
+
validate_every=0.25,
|
313 |
+
version_name='v1',
|
314 |
+
workers=16)
|
depthanything_vitb_u4k/patchfusion/20240315_193032.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
depthanything_vitb_u4k/patchfusion/checkpoint_16.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f104b19568f39e85783de4cd4ecf032ee24152e8daae929db458b111aef6ea20
|
3 |
+
size 417857453
|
depthanything_vitb_u4k/patchfusion/config.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'patchfusion'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vitb',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vitb',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
guided_fusion=dict(
|
147 |
+
g2l=True,
|
148 |
+
in_channels=[
|
149 |
+
32,
|
150 |
+
128,
|
151 |
+
128,
|
152 |
+
128,
|
153 |
+
128,
|
154 |
+
128,
|
155 |
+
],
|
156 |
+
n_channels=5,
|
157 |
+
num_patches=[
|
158 |
+
203056,
|
159 |
+
66304,
|
160 |
+
16576,
|
161 |
+
4144,
|
162 |
+
1036,
|
163 |
+
266,
|
164 |
+
],
|
165 |
+
patch_process_shape=(
|
166 |
+
392,
|
167 |
+
518,
|
168 |
+
),
|
169 |
+
type='GuidedFusionPatchFusion'),
|
170 |
+
max_depth=80,
|
171 |
+
min_depth=0.001,
|
172 |
+
patch_process_shape=(
|
173 |
+
392,
|
174 |
+
518,
|
175 |
+
),
|
176 |
+
pretrain_model=[
|
177 |
+
'./work_dir/depthanything_vitb_u4k/coarse_pretrain/checkpoint_24.pth',
|
178 |
+
'./work_dir/depthanything_vitb_u4k/fine_pretrain/checkpoint_24.pth',
|
179 |
+
],
|
180 |
+
sigloss=dict(type='SILogLoss'),
|
181 |
+
type='PatchFusion')
|
182 |
+
optim_wrapper = dict(
|
183 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
184 |
+
optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.001),
|
185 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
186 |
+
param_scheduler = dict(
|
187 |
+
base_momentum=0.85,
|
188 |
+
cycle_momentum=True,
|
189 |
+
div_factor=10,
|
190 |
+
final_div_factor=10000,
|
191 |
+
max_momentum=0.95,
|
192 |
+
pct_start=0.25,
|
193 |
+
three_phase=False)
|
194 |
+
project = 'patchfusion'
|
195 |
+
resume = False
|
196 |
+
tags = [
|
197 |
+
'patchfusion',
|
198 |
+
'da',
|
199 |
+
'vitb',
|
200 |
+
]
|
201 |
+
test_in_dataloader = dict(
|
202 |
+
batch_size=1,
|
203 |
+
dataset=dict(
|
204 |
+
data_root='./data/u4k',
|
205 |
+
max_depth=80,
|
206 |
+
min_depth=0.001,
|
207 |
+
mode='infer',
|
208 |
+
split='./data/u4k/splits/test.txt',
|
209 |
+
transform_cfg=dict(network_process_size=[
|
210 |
+
384,
|
211 |
+
512,
|
212 |
+
]),
|
213 |
+
type='UnrealStereo4kDataset'),
|
214 |
+
num_workers=2)
|
215 |
+
test_out_dataloader = dict(
|
216 |
+
batch_size=1,
|
217 |
+
dataset=dict(
|
218 |
+
data_root='./data/u4k',
|
219 |
+
max_depth=80,
|
220 |
+
min_depth=0.001,
|
221 |
+
mode='infer',
|
222 |
+
split='./data/u4k/splits/test_out.txt',
|
223 |
+
transform_cfg=dict(network_process_size=[
|
224 |
+
384,
|
225 |
+
512,
|
226 |
+
]),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=2)
|
229 |
+
train_cfg = dict(
|
230 |
+
eval_start=0,
|
231 |
+
log_interval=100,
|
232 |
+
max_epochs=16,
|
233 |
+
save_checkpoint_interval=16,
|
234 |
+
train_log_img_interval=500,
|
235 |
+
val_interval=2,
|
236 |
+
val_log_img_interval=50,
|
237 |
+
val_type='epoch_base')
|
238 |
+
train_dataloader = dict(
|
239 |
+
batch_size=4,
|
240 |
+
dataset=dict(
|
241 |
+
data_root='./data/u4k',
|
242 |
+
max_depth=80,
|
243 |
+
min_depth=0.001,
|
244 |
+
mode='train',
|
245 |
+
resize_mode='depth-anything',
|
246 |
+
split='./data/u4k/splits/train.txt',
|
247 |
+
transform_cfg=dict(
|
248 |
+
degree=1.0,
|
249 |
+
network_process_size=[
|
250 |
+
392,
|
251 |
+
518,
|
252 |
+
],
|
253 |
+
random_crop=True,
|
254 |
+
random_crop_size=(
|
255 |
+
540,
|
256 |
+
960,
|
257 |
+
)),
|
258 |
+
type='UnrealStereo4kDataset'),
|
259 |
+
num_workers=4)
|
260 |
+
val_dataloader = dict(
|
261 |
+
batch_size=1,
|
262 |
+
dataset=dict(
|
263 |
+
data_root='./data/u4k',
|
264 |
+
max_depth=80,
|
265 |
+
min_depth=0.001,
|
266 |
+
mode='infer',
|
267 |
+
resize_mode='depth-anything',
|
268 |
+
split='./data/u4k/splits/val.txt',
|
269 |
+
transform_cfg=dict(
|
270 |
+
degree=1.0,
|
271 |
+
network_process_size=[
|
272 |
+
392,
|
273 |
+
518,
|
274 |
+
],
|
275 |
+
random_crop_size=(
|
276 |
+
540,
|
277 |
+
960,
|
278 |
+
)),
|
279 |
+
type='UnrealStereo4kDataset'),
|
280 |
+
num_workers=2)
|
281 |
+
work_dir = './work_dir/depthanything_vitb_u4k/patchfusion'
|
282 |
+
zoe_depth_config = dict(
|
283 |
+
attractor_alpha=1000,
|
284 |
+
attractor_gamma=2,
|
285 |
+
attractor_kind='mean',
|
286 |
+
attractor_type='inv',
|
287 |
+
aug=True,
|
288 |
+
bin_centers_type='softplus',
|
289 |
+
bin_embedding_dim=128,
|
290 |
+
clip_grad=0.1,
|
291 |
+
dataset='nyu',
|
292 |
+
depth_anything=True,
|
293 |
+
distributed=True,
|
294 |
+
do_resize=False,
|
295 |
+
force_keep_ar=True,
|
296 |
+
freeze_midas_bn=True,
|
297 |
+
gpu='NULL',
|
298 |
+
img_size=[
|
299 |
+
392,
|
300 |
+
518,
|
301 |
+
],
|
302 |
+
inverse_midas=False,
|
303 |
+
log_images_every=0.1,
|
304 |
+
max_depth=80,
|
305 |
+
max_temp=50.0,
|
306 |
+
max_translation=100,
|
307 |
+
memory_efficient=True,
|
308 |
+
midas_model_type='vitb',
|
309 |
+
min_depth=0.001,
|
310 |
+
min_temp=0.0212,
|
311 |
+
model='zoedepth',
|
312 |
+
n_attractors=[
|
313 |
+
16,
|
314 |
+
8,
|
315 |
+
4,
|
316 |
+
1,
|
317 |
+
],
|
318 |
+
n_bins=64,
|
319 |
+
name='ZoeDepth',
|
320 |
+
notes='',
|
321 |
+
output_distribution='logbinomial',
|
322 |
+
prefetch=False,
|
323 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
|
324 |
+
print_losses=False,
|
325 |
+
project='ZoeDepth',
|
326 |
+
random_crop=False,
|
327 |
+
random_translate=False,
|
328 |
+
root='.',
|
329 |
+
save_dir='',
|
330 |
+
shared_dict='NULL',
|
331 |
+
tags='',
|
332 |
+
train_midas=True,
|
333 |
+
translate_prob=0.2,
|
334 |
+
type='DA-ZoeDepth',
|
335 |
+
uid='NULL',
|
336 |
+
use_amp=False,
|
337 |
+
use_pretrained_midas=True,
|
338 |
+
use_shared_dict=False,
|
339 |
+
validate_every=0.25,
|
340 |
+
version_name='v1',
|
341 |
+
workers=16)
|
depthanything_vitl_u4k/coarse_pretrain/20240315_102957.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
depthanything_vitl_u4k/coarse_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7347385b649cf4a99cbd1cad579bdcdd51cab915bfd283031e55f7e718178f68
|
3 |
+
size 4020717194
|
depthanything_vitl_u4k/coarse_pretrain/config.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'coarse_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vitl',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vitl',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
sigloss=dict(type='SILogLoss'),
|
149 |
+
target='coarse',
|
150 |
+
type='BaselinePretrain')
|
151 |
+
optim_wrapper = dict(
|
152 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
153 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
154 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
155 |
+
param_scheduler = dict(
|
156 |
+
base_momentum=0.85,
|
157 |
+
cycle_momentum=True,
|
158 |
+
div_factor=1,
|
159 |
+
final_div_factor=10000,
|
160 |
+
max_momentum=0.95,
|
161 |
+
pct_start=0.5,
|
162 |
+
three_phase=False)
|
163 |
+
project = 'patchfusion'
|
164 |
+
resume = False
|
165 |
+
tags = [
|
166 |
+
'coarse',
|
167 |
+
'da',
|
168 |
+
'vitl',
|
169 |
+
]
|
170 |
+
test_in_dataloader = dict(
|
171 |
+
batch_size=1,
|
172 |
+
dataset=dict(
|
173 |
+
data_root='./data/u4k',
|
174 |
+
max_depth=80,
|
175 |
+
min_depth=0.001,
|
176 |
+
mode='infer',
|
177 |
+
split='./data/u4k/splits/test.txt',
|
178 |
+
transform_cfg=dict(network_process_size=[
|
179 |
+
384,
|
180 |
+
512,
|
181 |
+
]),
|
182 |
+
type='UnrealStereo4kDataset'),
|
183 |
+
num_workers=2)
|
184 |
+
test_out_dataloader = dict(
|
185 |
+
batch_size=1,
|
186 |
+
dataset=dict(
|
187 |
+
data_root='./data/u4k',
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
mode='infer',
|
191 |
+
split='./data/u4k/splits/test_out.txt',
|
192 |
+
transform_cfg=dict(network_process_size=[
|
193 |
+
384,
|
194 |
+
512,
|
195 |
+
]),
|
196 |
+
type='UnrealStereo4kDataset'),
|
197 |
+
num_workers=2)
|
198 |
+
train_cfg = dict(
|
199 |
+
eval_start=0,
|
200 |
+
log_interval=100,
|
201 |
+
max_epochs=24,
|
202 |
+
save_checkpoint_interval=24,
|
203 |
+
train_log_img_interval=500,
|
204 |
+
val_interval=2,
|
205 |
+
val_log_img_interval=50,
|
206 |
+
val_type='epoch_base')
|
207 |
+
train_dataloader = dict(
|
208 |
+
batch_size=4,
|
209 |
+
dataset=dict(
|
210 |
+
data_root='./data/u4k',
|
211 |
+
max_depth=80,
|
212 |
+
min_depth=0.001,
|
213 |
+
mode='train',
|
214 |
+
resize_mode='depth-anything',
|
215 |
+
split='./data/u4k/splits/train.txt',
|
216 |
+
transform_cfg=dict(
|
217 |
+
degree=1.0,
|
218 |
+
network_process_size=[
|
219 |
+
392,
|
220 |
+
518,
|
221 |
+
],
|
222 |
+
random_crop=True,
|
223 |
+
random_crop_size=(
|
224 |
+
540,
|
225 |
+
960,
|
226 |
+
)),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=4)
|
229 |
+
val_dataloader = dict(
|
230 |
+
batch_size=1,
|
231 |
+
dataset=dict(
|
232 |
+
data_root='./data/u4k',
|
233 |
+
max_depth=80,
|
234 |
+
min_depth=0.001,
|
235 |
+
mode='infer',
|
236 |
+
resize_mode='depth-anything',
|
237 |
+
split='./data/u4k/splits/val.txt',
|
238 |
+
transform_cfg=dict(
|
239 |
+
degree=1.0,
|
240 |
+
network_process_size=[
|
241 |
+
392,
|
242 |
+
518,
|
243 |
+
],
|
244 |
+
random_crop_size=(
|
245 |
+
540,
|
246 |
+
960,
|
247 |
+
)),
|
248 |
+
type='UnrealStereo4kDataset'),
|
249 |
+
num_workers=2)
|
250 |
+
work_dir = './work_dir/depthanything_vitl_u4k/coarse_pretrain'
|
251 |
+
zoe_depth_config = dict(
|
252 |
+
attractor_alpha=1000,
|
253 |
+
attractor_gamma=2,
|
254 |
+
attractor_kind='mean',
|
255 |
+
attractor_type='inv',
|
256 |
+
aug=True,
|
257 |
+
bin_centers_type='softplus',
|
258 |
+
bin_embedding_dim=128,
|
259 |
+
clip_grad=0.1,
|
260 |
+
dataset='nyu',
|
261 |
+
depth_anything=True,
|
262 |
+
distributed=True,
|
263 |
+
do_resize=False,
|
264 |
+
force_keep_ar=True,
|
265 |
+
freeze_midas_bn=True,
|
266 |
+
gpu='NULL',
|
267 |
+
img_size=[
|
268 |
+
392,
|
269 |
+
518,
|
270 |
+
],
|
271 |
+
inverse_midas=False,
|
272 |
+
log_images_every=0.1,
|
273 |
+
max_depth=80,
|
274 |
+
max_temp=50.0,
|
275 |
+
max_translation=100,
|
276 |
+
memory_efficient=True,
|
277 |
+
midas_model_type='vitl',
|
278 |
+
min_depth=0.001,
|
279 |
+
min_temp=0.0212,
|
280 |
+
model='zoedepth',
|
281 |
+
n_attractors=[
|
282 |
+
16,
|
283 |
+
8,
|
284 |
+
4,
|
285 |
+
1,
|
286 |
+
],
|
287 |
+
n_bins=64,
|
288 |
+
name='ZoeDepth',
|
289 |
+
notes='',
|
290 |
+
output_distribution='logbinomial',
|
291 |
+
prefetch=False,
|
292 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
293 |
+
print_losses=False,
|
294 |
+
project='ZoeDepth',
|
295 |
+
random_crop=False,
|
296 |
+
random_translate=False,
|
297 |
+
root='.',
|
298 |
+
save_dir='',
|
299 |
+
shared_dict='NULL',
|
300 |
+
tags='',
|
301 |
+
train_midas=True,
|
302 |
+
translate_prob=0.2,
|
303 |
+
type='DA-ZoeDepth',
|
304 |
+
uid='NULL',
|
305 |
+
use_amp=False,
|
306 |
+
use_pretrained_midas=True,
|
307 |
+
use_shared_dict=False,
|
308 |
+
validate_every=0.25,
|
309 |
+
version_name='v1',
|
310 |
+
workers=16)
|
depthanything_vitl_u4k/fine_pretrain/20240315_140837.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
depthanything_vitl_u4k/fine_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37181232060bc2b0fd663cf3fc008dda37b262f680a915689f6e55f072648fc7
|
3 |
+
size 4020717194
|
depthanything_vitl_u4k/fine_pretrain/config.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'fine_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vitl',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vitl',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
patch_process_shape=(
|
149 |
+
392,
|
150 |
+
518,
|
151 |
+
),
|
152 |
+
sigloss=dict(type='SILogLoss'),
|
153 |
+
target='fine',
|
154 |
+
type='BaselinePretrain')
|
155 |
+
optim_wrapper = dict(
|
156 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
157 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
158 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
159 |
+
param_scheduler = dict(
|
160 |
+
base_momentum=0.85,
|
161 |
+
cycle_momentum=True,
|
162 |
+
div_factor=1,
|
163 |
+
final_div_factor=10000,
|
164 |
+
max_momentum=0.95,
|
165 |
+
pct_start=0.5,
|
166 |
+
three_phase=False)
|
167 |
+
project = 'patchfusion'
|
168 |
+
resume = False
|
169 |
+
tags = [
|
170 |
+
'fine',
|
171 |
+
'da',
|
172 |
+
'vitl',
|
173 |
+
]
|
174 |
+
test_in_dataloader = dict(
|
175 |
+
batch_size=1,
|
176 |
+
dataset=dict(
|
177 |
+
data_root='./data/u4k',
|
178 |
+
max_depth=80,
|
179 |
+
min_depth=0.001,
|
180 |
+
mode='infer',
|
181 |
+
split='./data/u4k/splits/test.txt',
|
182 |
+
transform_cfg=dict(network_process_size=[
|
183 |
+
384,
|
184 |
+
512,
|
185 |
+
]),
|
186 |
+
type='UnrealStereo4kDataset'),
|
187 |
+
num_workers=2)
|
188 |
+
test_out_dataloader = dict(
|
189 |
+
batch_size=1,
|
190 |
+
dataset=dict(
|
191 |
+
data_root='./data/u4k',
|
192 |
+
max_depth=80,
|
193 |
+
min_depth=0.001,
|
194 |
+
mode='infer',
|
195 |
+
split='./data/u4k/splits/test_out.txt',
|
196 |
+
transform_cfg=dict(network_process_size=[
|
197 |
+
384,
|
198 |
+
512,
|
199 |
+
]),
|
200 |
+
type='UnrealStereo4kDataset'),
|
201 |
+
num_workers=2)
|
202 |
+
train_cfg = dict(
|
203 |
+
eval_start=0,
|
204 |
+
log_interval=100,
|
205 |
+
max_epochs=24,
|
206 |
+
save_checkpoint_interval=24,
|
207 |
+
train_log_img_interval=500,
|
208 |
+
val_interval=2,
|
209 |
+
val_log_img_interval=50,
|
210 |
+
val_type='epoch_base')
|
211 |
+
train_dataloader = dict(
|
212 |
+
batch_size=4,
|
213 |
+
dataset=dict(
|
214 |
+
data_root='./data/u4k',
|
215 |
+
max_depth=80,
|
216 |
+
min_depth=0.001,
|
217 |
+
mode='train',
|
218 |
+
resize_mode='depth-anything',
|
219 |
+
split='./data/u4k/splits/train.txt',
|
220 |
+
transform_cfg=dict(
|
221 |
+
degree=1.0,
|
222 |
+
network_process_size=[
|
223 |
+
392,
|
224 |
+
518,
|
225 |
+
],
|
226 |
+
random_crop=True,
|
227 |
+
random_crop_size=(
|
228 |
+
540,
|
229 |
+
960,
|
230 |
+
)),
|
231 |
+
type='UnrealStereo4kDataset'),
|
232 |
+
num_workers=4)
|
233 |
+
val_dataloader = dict(
|
234 |
+
batch_size=1,
|
235 |
+
dataset=dict(
|
236 |
+
data_root='./data/u4k',
|
237 |
+
max_depth=80,
|
238 |
+
min_depth=0.001,
|
239 |
+
mode='infer',
|
240 |
+
resize_mode='depth-anything',
|
241 |
+
split='./data/u4k/splits/val.txt',
|
242 |
+
transform_cfg=dict(
|
243 |
+
degree=1.0,
|
244 |
+
network_process_size=[
|
245 |
+
392,
|
246 |
+
518,
|
247 |
+
],
|
248 |
+
random_crop_size=(
|
249 |
+
540,
|
250 |
+
960,
|
251 |
+
)),
|
252 |
+
type='UnrealStereo4kDataset'),
|
253 |
+
num_workers=2)
|
254 |
+
work_dir = './work_dir/depthanything_vitl_u4k/fine_pretrain'
|
255 |
+
zoe_depth_config = dict(
|
256 |
+
attractor_alpha=1000,
|
257 |
+
attractor_gamma=2,
|
258 |
+
attractor_kind='mean',
|
259 |
+
attractor_type='inv',
|
260 |
+
aug=True,
|
261 |
+
bin_centers_type='softplus',
|
262 |
+
bin_embedding_dim=128,
|
263 |
+
clip_grad=0.1,
|
264 |
+
dataset='nyu',
|
265 |
+
depth_anything=True,
|
266 |
+
distributed=True,
|
267 |
+
do_resize=False,
|
268 |
+
force_keep_ar=True,
|
269 |
+
freeze_midas_bn=True,
|
270 |
+
gpu='NULL',
|
271 |
+
img_size=[
|
272 |
+
392,
|
273 |
+
518,
|
274 |
+
],
|
275 |
+
inverse_midas=False,
|
276 |
+
log_images_every=0.1,
|
277 |
+
max_depth=80,
|
278 |
+
max_temp=50.0,
|
279 |
+
max_translation=100,
|
280 |
+
memory_efficient=True,
|
281 |
+
midas_model_type='vitl',
|
282 |
+
min_depth=0.001,
|
283 |
+
min_temp=0.0212,
|
284 |
+
model='zoedepth',
|
285 |
+
n_attractors=[
|
286 |
+
16,
|
287 |
+
8,
|
288 |
+
4,
|
289 |
+
1,
|
290 |
+
],
|
291 |
+
n_bins=64,
|
292 |
+
name='ZoeDepth',
|
293 |
+
notes='',
|
294 |
+
output_distribution='logbinomial',
|
295 |
+
prefetch=False,
|
296 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
297 |
+
print_losses=False,
|
298 |
+
project='ZoeDepth',
|
299 |
+
random_crop=False,
|
300 |
+
random_translate=False,
|
301 |
+
root='.',
|
302 |
+
save_dir='',
|
303 |
+
shared_dict='NULL',
|
304 |
+
tags='',
|
305 |
+
train_midas=True,
|
306 |
+
translate_prob=0.2,
|
307 |
+
type='DA-ZoeDepth',
|
308 |
+
uid='NULL',
|
309 |
+
use_amp=False,
|
310 |
+
use_pretrained_midas=True,
|
311 |
+
use_shared_dict=False,
|
312 |
+
validate_every=0.25,
|
313 |
+
version_name='v1',
|
314 |
+
workers=16)
|
depthanything_vitl_u4k/patchfusion/20240315_175237.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
depthanything_vitl_u4k/patchfusion/checkpoint_16.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79e530dd2ad7587b21b2b778b60ba0c459621969ed8b015b96987124c0747e10
|
3 |
+
size 1128275629
|
depthanything_vitl_u4k/patchfusion/config.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = True
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='',
|
20 |
+
gt_dir=None,
|
21 |
+
network_process_size=(
|
22 |
+
392,
|
23 |
+
518,
|
24 |
+
),
|
25 |
+
resize_mode='depth-anything',
|
26 |
+
rgb_image_dir='',
|
27 |
+
type='ImageDataset'),
|
28 |
+
num_workers=2)
|
29 |
+
launcher = 'pytorch'
|
30 |
+
log_name = 'patchfusion'
|
31 |
+
max_depth = 80
|
32 |
+
min_depth = 0.001
|
33 |
+
model = dict(
|
34 |
+
coarse_branch=dict(
|
35 |
+
attractor_alpha=1000,
|
36 |
+
attractor_gamma=2,
|
37 |
+
attractor_kind='mean',
|
38 |
+
attractor_type='inv',
|
39 |
+
aug=True,
|
40 |
+
bin_centers_type='softplus',
|
41 |
+
bin_embedding_dim=128,
|
42 |
+
clip_grad=0.1,
|
43 |
+
dataset='nyu',
|
44 |
+
depth_anything=True,
|
45 |
+
distributed=True,
|
46 |
+
do_resize=False,
|
47 |
+
force_keep_ar=True,
|
48 |
+
freeze_midas_bn=True,
|
49 |
+
gpu='NULL',
|
50 |
+
img_size=[
|
51 |
+
392,
|
52 |
+
518,
|
53 |
+
],
|
54 |
+
inverse_midas=False,
|
55 |
+
log_images_every=0.1,
|
56 |
+
max_depth=80,
|
57 |
+
max_temp=50.0,
|
58 |
+
max_translation=100,
|
59 |
+
memory_efficient=True,
|
60 |
+
midas_model_type='vitl',
|
61 |
+
min_depth=0.001,
|
62 |
+
min_temp=0.0212,
|
63 |
+
model='zoedepth',
|
64 |
+
n_attractors=[
|
65 |
+
16,
|
66 |
+
8,
|
67 |
+
4,
|
68 |
+
1,
|
69 |
+
],
|
70 |
+
n_bins=64,
|
71 |
+
name='ZoeDepth',
|
72 |
+
notes='',
|
73 |
+
output_distribution='logbinomial',
|
74 |
+
prefetch=False,
|
75 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
76 |
+
print_losses=False,
|
77 |
+
project='ZoeDepth',
|
78 |
+
random_crop=False,
|
79 |
+
random_translate=False,
|
80 |
+
root='.',
|
81 |
+
save_dir='',
|
82 |
+
shared_dict='NULL',
|
83 |
+
tags='',
|
84 |
+
train_midas=True,
|
85 |
+
translate_prob=0.2,
|
86 |
+
type='DA-ZoeDepth',
|
87 |
+
uid='NULL',
|
88 |
+
use_amp=False,
|
89 |
+
use_pretrained_midas=True,
|
90 |
+
use_shared_dict=False,
|
91 |
+
validate_every=0.25,
|
92 |
+
version_name='v1',
|
93 |
+
workers=16),
|
94 |
+
fine_branch=dict(
|
95 |
+
attractor_alpha=1000,
|
96 |
+
attractor_gamma=2,
|
97 |
+
attractor_kind='mean',
|
98 |
+
attractor_type='inv',
|
99 |
+
aug=True,
|
100 |
+
bin_centers_type='softplus',
|
101 |
+
bin_embedding_dim=128,
|
102 |
+
clip_grad=0.1,
|
103 |
+
dataset='nyu',
|
104 |
+
depth_anything=True,
|
105 |
+
distributed=True,
|
106 |
+
do_resize=False,
|
107 |
+
force_keep_ar=True,
|
108 |
+
freeze_midas_bn=True,
|
109 |
+
gpu='NULL',
|
110 |
+
img_size=[
|
111 |
+
392,
|
112 |
+
518,
|
113 |
+
],
|
114 |
+
inverse_midas=False,
|
115 |
+
log_images_every=0.1,
|
116 |
+
max_depth=80,
|
117 |
+
max_temp=50.0,
|
118 |
+
max_translation=100,
|
119 |
+
memory_efficient=True,
|
120 |
+
midas_model_type='vitl',
|
121 |
+
min_depth=0.001,
|
122 |
+
min_temp=0.0212,
|
123 |
+
model='zoedepth',
|
124 |
+
n_attractors=[
|
125 |
+
16,
|
126 |
+
8,
|
127 |
+
4,
|
128 |
+
1,
|
129 |
+
],
|
130 |
+
n_bins=64,
|
131 |
+
name='ZoeDepth',
|
132 |
+
notes='',
|
133 |
+
output_distribution='logbinomial',
|
134 |
+
prefetch=False,
|
135 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
136 |
+
print_losses=False,
|
137 |
+
project='ZoeDepth',
|
138 |
+
random_crop=False,
|
139 |
+
random_translate=False,
|
140 |
+
root='.',
|
141 |
+
save_dir='',
|
142 |
+
shared_dict='NULL',
|
143 |
+
tags='',
|
144 |
+
train_midas=True,
|
145 |
+
translate_prob=0.2,
|
146 |
+
type='DA-ZoeDepth',
|
147 |
+
uid='NULL',
|
148 |
+
use_amp=False,
|
149 |
+
use_pretrained_midas=True,
|
150 |
+
use_shared_dict=False,
|
151 |
+
validate_every=0.25,
|
152 |
+
version_name='v1',
|
153 |
+
workers=16),
|
154 |
+
guided_fusion=dict(
|
155 |
+
g2l=True,
|
156 |
+
in_channels=[
|
157 |
+
32,
|
158 |
+
256,
|
159 |
+
256,
|
160 |
+
256,
|
161 |
+
256,
|
162 |
+
256,
|
163 |
+
],
|
164 |
+
n_channels=5,
|
165 |
+
num_patches=[
|
166 |
+
203056,
|
167 |
+
66304,
|
168 |
+
16576,
|
169 |
+
4144,
|
170 |
+
1036,
|
171 |
+
266,
|
172 |
+
],
|
173 |
+
patch_process_shape=(
|
174 |
+
392,
|
175 |
+
518,
|
176 |
+
),
|
177 |
+
type='GuidedFusionPatchFusion'),
|
178 |
+
max_depth=80,
|
179 |
+
min_depth=0.001,
|
180 |
+
patch_process_shape=(
|
181 |
+
392,
|
182 |
+
518,
|
183 |
+
),
|
184 |
+
pretrain_model=[
|
185 |
+
'./work_dir/depthanything_vitl_u4k/coarse_pretrain/checkpoint_24.pth',
|
186 |
+
'./work_dir/depthanything_vitl_u4k/fine_pretrain/checkpoint_24.pth',
|
187 |
+
],
|
188 |
+
sigloss=dict(type='SILogLoss'),
|
189 |
+
type='PatchFusion')
|
190 |
+
optim_wrapper = dict(
|
191 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
192 |
+
optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.001),
|
193 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
194 |
+
param_scheduler = dict(
|
195 |
+
base_momentum=0.85,
|
196 |
+
cycle_momentum=True,
|
197 |
+
div_factor=10,
|
198 |
+
final_div_factor=10000,
|
199 |
+
max_momentum=0.95,
|
200 |
+
pct_start=0.25,
|
201 |
+
three_phase=False)
|
202 |
+
project = 'patchfusion'
|
203 |
+
resume = False
|
204 |
+
tags = [
|
205 |
+
'patchfusion',
|
206 |
+
'da',
|
207 |
+
'vitl',
|
208 |
+
]
|
209 |
+
test_in_dataloader = dict(
|
210 |
+
batch_size=1,
|
211 |
+
dataset=dict(
|
212 |
+
data_root='./data/u4k',
|
213 |
+
max_depth=80,
|
214 |
+
min_depth=0.001,
|
215 |
+
mode='infer',
|
216 |
+
split='./data/u4k/splits/test.txt',
|
217 |
+
transform_cfg=dict(network_process_size=[
|
218 |
+
384,
|
219 |
+
512,
|
220 |
+
]),
|
221 |
+
type='UnrealStereo4kDataset'),
|
222 |
+
num_workers=2)
|
223 |
+
test_out_dataloader = dict(
|
224 |
+
batch_size=1,
|
225 |
+
dataset=dict(
|
226 |
+
data_root='./data/u4k',
|
227 |
+
max_depth=80,
|
228 |
+
min_depth=0.001,
|
229 |
+
mode='infer',
|
230 |
+
split='./data/u4k/splits/test_out.txt',
|
231 |
+
transform_cfg=dict(network_process_size=[
|
232 |
+
384,
|
233 |
+
512,
|
234 |
+
]),
|
235 |
+
type='UnrealStereo4kDataset'),
|
236 |
+
num_workers=2)
|
237 |
+
train_cfg = dict(
|
238 |
+
eval_start=0,
|
239 |
+
log_interval=100,
|
240 |
+
max_epochs=16,
|
241 |
+
save_checkpoint_interval=16,
|
242 |
+
train_log_img_interval=500,
|
243 |
+
val_interval=2,
|
244 |
+
val_log_img_interval=50,
|
245 |
+
val_type='epoch_base')
|
246 |
+
train_dataloader = dict(
|
247 |
+
batch_size=4,
|
248 |
+
dataset=dict(
|
249 |
+
data_root='./data/u4k',
|
250 |
+
max_depth=80,
|
251 |
+
min_depth=0.001,
|
252 |
+
mode='train',
|
253 |
+
resize_mode='depth-anything',
|
254 |
+
split='./data/u4k/splits/train.txt',
|
255 |
+
transform_cfg=dict(
|
256 |
+
degree=1.0,
|
257 |
+
network_process_size=[
|
258 |
+
392,
|
259 |
+
518,
|
260 |
+
],
|
261 |
+
random_crop=True,
|
262 |
+
random_crop_size=(
|
263 |
+
540,
|
264 |
+
960,
|
265 |
+
)),
|
266 |
+
type='UnrealStereo4kDataset'),
|
267 |
+
num_workers=4)
|
268 |
+
val_dataloader = dict(
|
269 |
+
batch_size=1,
|
270 |
+
dataset=dict(
|
271 |
+
data_root='./data/u4k',
|
272 |
+
max_depth=80,
|
273 |
+
min_depth=0.001,
|
274 |
+
mode='infer',
|
275 |
+
resize_mode='depth-anything',
|
276 |
+
split='./data/u4k/splits/val.txt',
|
277 |
+
transform_cfg=dict(
|
278 |
+
network_process_size=[
|
279 |
+
392,
|
280 |
+
518,
|
281 |
+
], random_crop_size=(
|
282 |
+
540,
|
283 |
+
960,
|
284 |
+
)),
|
285 |
+
type='UnrealStereo4kDataset'),
|
286 |
+
num_workers=2)
|
287 |
+
work_dir = './work_dir/depthanything_vitl_u4k/patchfusion'
|
288 |
+
zoe_depth_config = dict(
|
289 |
+
attractor_alpha=1000,
|
290 |
+
attractor_gamma=2,
|
291 |
+
attractor_kind='mean',
|
292 |
+
attractor_type='inv',
|
293 |
+
aug=True,
|
294 |
+
bin_centers_type='softplus',
|
295 |
+
bin_embedding_dim=128,
|
296 |
+
clip_grad=0.1,
|
297 |
+
dataset='nyu',
|
298 |
+
depth_anything=True,
|
299 |
+
distributed=True,
|
300 |
+
do_resize=False,
|
301 |
+
force_keep_ar=True,
|
302 |
+
freeze_midas_bn=True,
|
303 |
+
gpu='NULL',
|
304 |
+
img_size=[
|
305 |
+
392,
|
306 |
+
518,
|
307 |
+
],
|
308 |
+
inverse_midas=False,
|
309 |
+
log_images_every=0.1,
|
310 |
+
max_depth=80,
|
311 |
+
max_temp=50.0,
|
312 |
+
max_translation=100,
|
313 |
+
memory_efficient=True,
|
314 |
+
midas_model_type='vitl',
|
315 |
+
min_depth=0.001,
|
316 |
+
min_temp=0.0212,
|
317 |
+
model='zoedepth',
|
318 |
+
n_attractors=[
|
319 |
+
16,
|
320 |
+
8,
|
321 |
+
4,
|
322 |
+
1,
|
323 |
+
],
|
324 |
+
n_bins=64,
|
325 |
+
name='ZoeDepth',
|
326 |
+
notes='',
|
327 |
+
output_distribution='logbinomial',
|
328 |
+
prefetch=False,
|
329 |
+
pretrained_resource='local::./work_dir/DepthAnything_vitl.pt',
|
330 |
+
print_losses=False,
|
331 |
+
project='ZoeDepth',
|
332 |
+
random_crop=False,
|
333 |
+
random_translate=False,
|
334 |
+
root='.',
|
335 |
+
save_dir='',
|
336 |
+
shared_dict='NULL',
|
337 |
+
tags='',
|
338 |
+
train_midas=True,
|
339 |
+
translate_prob=0.2,
|
340 |
+
type='DA-ZoeDepth',
|
341 |
+
uid='NULL',
|
342 |
+
use_amp=False,
|
343 |
+
use_pretrained_midas=True,
|
344 |
+
use_shared_dict=False,
|
345 |
+
validate_every=0.25,
|
346 |
+
version_name='v1',
|
347 |
+
workers=16)
|
depthanything_vits_u4k/coarse_pretrain/20240315_002030.log
ADDED
@@ -0,0 +1,1024 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024/03/15 00:20:41 - patchstitcher - INFO -
|
2 |
+
------------------------------------------------------------
|
3 |
+
System environment:
|
4 |
+
sys.platform: linux
|
5 |
+
Python: 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) [GCC 12.3.0]
|
6 |
+
CUDA available: True
|
7 |
+
numpy_random_seed: 621
|
8 |
+
GPU 0,1,2,3: NVIDIA A100-SXM4-80GB
|
9 |
+
CUDA_HOME: /sw/rl9g/cuda/11.8/rl9_binary
|
10 |
+
NVCC: Cuda compilation tools, release 11.8, V11.8.89
|
11 |
+
GCC: gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)
|
12 |
+
PyTorch: 2.1.2
|
13 |
+
PyTorch compiling details: PyTorch built with:
|
14 |
+
- GCC 9.3
|
15 |
+
- C++ Version: 201703
|
16 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
|
17 |
+
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
|
18 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
19 |
+
- LAPACK is enabled (usually provided by MKL)
|
20 |
+
- NNPACK is enabled
|
21 |
+
- CPU capability usage: AVX2
|
22 |
+
- CUDA Runtime 11.8
|
23 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
|
24 |
+
- CuDNN 8.7
|
25 |
+
- Magma 2.6.1
|
26 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
27 |
+
|
28 |
+
TorchVision: 0.16.2
|
29 |
+
OpenCV: 4.8.1
|
30 |
+
MMEngine: 0.10.2
|
31 |
+
|
32 |
+
Runtime environment:
|
33 |
+
cudnn_benchmark: True
|
34 |
+
mp_cfg: {'mp_start_method': 'forkserver'}
|
35 |
+
dist_cfg: {'backend': 'nccl'}
|
36 |
+
seed: 621
|
37 |
+
Distributed launcher: pytorch
|
38 |
+
Distributed training: True
|
39 |
+
GPU number: 4
|
40 |
+
------------------------------------------------------------
|
41 |
+
|
42 |
+
2024/03/15 00:20:41 - patchstitcher - INFO - Config:
|
43 |
+
collect_input_args = [
|
44 |
+
'image_lr',
|
45 |
+
'crops_image_hr',
|
46 |
+
'depth_gt',
|
47 |
+
'crop_depths',
|
48 |
+
'bboxs',
|
49 |
+
'image_hr',
|
50 |
+
]
|
51 |
+
convert_syncbn = True
|
52 |
+
debug = False
|
53 |
+
env_cfg = dict(
|
54 |
+
cudnn_benchmark=True,
|
55 |
+
dist_cfg=dict(backend='nccl'),
|
56 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
57 |
+
find_unused_parameters = True
|
58 |
+
general_dataloader = dict(
|
59 |
+
batch_size=1,
|
60 |
+
dataset=dict(
|
61 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
62 |
+
num_workers=2)
|
63 |
+
launcher = 'pytorch'
|
64 |
+
log_name = 'coarse_pretrain'
|
65 |
+
max_depth = 80
|
66 |
+
min_depth = 0.001
|
67 |
+
model = dict(
|
68 |
+
coarse_branch=dict(
|
69 |
+
attractor_alpha=1000,
|
70 |
+
attractor_gamma=2,
|
71 |
+
attractor_kind='mean',
|
72 |
+
attractor_type='inv',
|
73 |
+
aug=True,
|
74 |
+
bin_centers_type='softplus',
|
75 |
+
bin_embedding_dim=128,
|
76 |
+
clip_grad=0.1,
|
77 |
+
dataset='nyu',
|
78 |
+
depth_anything=True,
|
79 |
+
distributed=True,
|
80 |
+
do_resize=False,
|
81 |
+
force_keep_ar=True,
|
82 |
+
freeze_midas_bn=True,
|
83 |
+
gpu='NULL',
|
84 |
+
img_size=[
|
85 |
+
392,
|
86 |
+
518,
|
87 |
+
],
|
88 |
+
inverse_midas=False,
|
89 |
+
log_images_every=0.1,
|
90 |
+
max_depth=80,
|
91 |
+
max_temp=50.0,
|
92 |
+
max_translation=100,
|
93 |
+
memory_efficient=True,
|
94 |
+
midas_model_type='vits',
|
95 |
+
min_depth=0.001,
|
96 |
+
min_temp=0.0212,
|
97 |
+
model='zoedepth',
|
98 |
+
n_attractors=[
|
99 |
+
16,
|
100 |
+
8,
|
101 |
+
4,
|
102 |
+
1,
|
103 |
+
],
|
104 |
+
n_bins=64,
|
105 |
+
name='ZoeDepth',
|
106 |
+
notes='',
|
107 |
+
output_distribution='logbinomial',
|
108 |
+
prefetch=False,
|
109 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
110 |
+
print_losses=False,
|
111 |
+
project='ZoeDepth',
|
112 |
+
random_crop=False,
|
113 |
+
random_translate=False,
|
114 |
+
root='.',
|
115 |
+
save_dir='',
|
116 |
+
shared_dict='NULL',
|
117 |
+
tags='',
|
118 |
+
train_midas=True,
|
119 |
+
translate_prob=0.2,
|
120 |
+
type='DA-ZoeDepth',
|
121 |
+
uid='NULL',
|
122 |
+
use_amp=False,
|
123 |
+
use_pretrained_midas=True,
|
124 |
+
use_shared_dict=False,
|
125 |
+
validate_every=0.25,
|
126 |
+
version_name='v1',
|
127 |
+
workers=16),
|
128 |
+
fine_branch=dict(
|
129 |
+
attractor_alpha=1000,
|
130 |
+
attractor_gamma=2,
|
131 |
+
attractor_kind='mean',
|
132 |
+
attractor_type='inv',
|
133 |
+
aug=True,
|
134 |
+
bin_centers_type='softplus',
|
135 |
+
bin_embedding_dim=128,
|
136 |
+
clip_grad=0.1,
|
137 |
+
dataset='nyu',
|
138 |
+
depth_anything=True,
|
139 |
+
distributed=True,
|
140 |
+
do_resize=False,
|
141 |
+
force_keep_ar=True,
|
142 |
+
freeze_midas_bn=True,
|
143 |
+
gpu='NULL',
|
144 |
+
img_size=[
|
145 |
+
392,
|
146 |
+
518,
|
147 |
+
],
|
148 |
+
inverse_midas=False,
|
149 |
+
log_images_every=0.1,
|
150 |
+
max_depth=80,
|
151 |
+
max_temp=50.0,
|
152 |
+
max_translation=100,
|
153 |
+
memory_efficient=True,
|
154 |
+
midas_model_type='vits',
|
155 |
+
min_depth=0.001,
|
156 |
+
min_temp=0.0212,
|
157 |
+
model='zoedepth',
|
158 |
+
n_attractors=[
|
159 |
+
16,
|
160 |
+
8,
|
161 |
+
4,
|
162 |
+
1,
|
163 |
+
],
|
164 |
+
n_bins=64,
|
165 |
+
name='ZoeDepth',
|
166 |
+
notes='',
|
167 |
+
output_distribution='logbinomial',
|
168 |
+
prefetch=False,
|
169 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
170 |
+
print_losses=False,
|
171 |
+
project='ZoeDepth',
|
172 |
+
random_crop=False,
|
173 |
+
random_translate=False,
|
174 |
+
root='.',
|
175 |
+
save_dir='',
|
176 |
+
shared_dict='NULL',
|
177 |
+
tags='',
|
178 |
+
train_midas=True,
|
179 |
+
translate_prob=0.2,
|
180 |
+
type='DA-ZoeDepth',
|
181 |
+
uid='NULL',
|
182 |
+
use_amp=False,
|
183 |
+
use_pretrained_midas=True,
|
184 |
+
use_shared_dict=False,
|
185 |
+
validate_every=0.25,
|
186 |
+
version_name='v1',
|
187 |
+
workers=16),
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
sigloss=dict(type='SILogLoss'),
|
191 |
+
target='coarse',
|
192 |
+
type='BaselinePretrain')
|
193 |
+
optim_wrapper = dict(
|
194 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
195 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
196 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
197 |
+
param_scheduler = dict(
|
198 |
+
base_momentum=0.85,
|
199 |
+
cycle_momentum=True,
|
200 |
+
div_factor=1,
|
201 |
+
final_div_factor=10000,
|
202 |
+
max_momentum=0.95,
|
203 |
+
pct_start=0.5,
|
204 |
+
three_phase=False)
|
205 |
+
project = 'patchfusion'
|
206 |
+
tags = [
|
207 |
+
'coarse',
|
208 |
+
'da',
|
209 |
+
'vits',
|
210 |
+
]
|
211 |
+
test_in_dataloader = dict(
|
212 |
+
batch_size=1,
|
213 |
+
dataset=dict(
|
214 |
+
data_root='./data/u4k',
|
215 |
+
max_depth=80,
|
216 |
+
min_depth=0.001,
|
217 |
+
mode='infer',
|
218 |
+
split='./data/u4k/splits/test.txt',
|
219 |
+
transform_cfg=dict(network_process_size=[
|
220 |
+
384,
|
221 |
+
512,
|
222 |
+
]),
|
223 |
+
type='UnrealStereo4kDataset'),
|
224 |
+
num_workers=2)
|
225 |
+
test_out_dataloader = dict(
|
226 |
+
batch_size=1,
|
227 |
+
dataset=dict(
|
228 |
+
data_root='./data/u4k',
|
229 |
+
max_depth=80,
|
230 |
+
min_depth=0.001,
|
231 |
+
mode='infer',
|
232 |
+
split='./data/u4k/splits/test_out.txt',
|
233 |
+
transform_cfg=dict(network_process_size=[
|
234 |
+
384,
|
235 |
+
512,
|
236 |
+
]),
|
237 |
+
type='UnrealStereo4kDataset'),
|
238 |
+
num_workers=2)
|
239 |
+
train_cfg = dict(
|
240 |
+
eval_start=0,
|
241 |
+
log_interval=100,
|
242 |
+
max_epochs=24,
|
243 |
+
save_checkpoint_interval=24,
|
244 |
+
train_log_img_interval=100,
|
245 |
+
val_interval=2,
|
246 |
+
val_log_img_interval=50,
|
247 |
+
val_type='epoch_base')
|
248 |
+
train_dataloader = dict(
|
249 |
+
batch_size=4,
|
250 |
+
dataset=dict(
|
251 |
+
data_root='./data/u4k',
|
252 |
+
max_depth=80,
|
253 |
+
min_depth=0.001,
|
254 |
+
mode='train',
|
255 |
+
resize_mode='depth-anything',
|
256 |
+
split='./data/u4k/splits/train.txt',
|
257 |
+
transform_cfg=dict(
|
258 |
+
degree=1.0, network_process_size=[
|
259 |
+
392,
|
260 |
+
518,
|
261 |
+
], random_crop=True),
|
262 |
+
type='UnrealStereo4kDataset'),
|
263 |
+
num_workers=4)
|
264 |
+
val_dataloader = dict(
|
265 |
+
batch_size=1,
|
266 |
+
dataset=dict(
|
267 |
+
data_root='./data/u4k',
|
268 |
+
max_depth=80,
|
269 |
+
min_depth=0.001,
|
270 |
+
mode='infer',
|
271 |
+
resize_mode='depth-anything',
|
272 |
+
split='./data/u4k/splits/val.txt',
|
273 |
+
transform_cfg=dict(degree=1.0, network_process_size=[
|
274 |
+
392,
|
275 |
+
518,
|
276 |
+
]),
|
277 |
+
type='UnrealStereo4kDataset'),
|
278 |
+
num_workers=2)
|
279 |
+
work_dir = './work_dir/depthanything_vits_u4k/coarse_pretrain'
|
280 |
+
zoe_depth_config = dict(
|
281 |
+
attractor_alpha=1000,
|
282 |
+
attractor_gamma=2,
|
283 |
+
attractor_kind='mean',
|
284 |
+
attractor_type='inv',
|
285 |
+
aug=True,
|
286 |
+
bin_centers_type='softplus',
|
287 |
+
bin_embedding_dim=128,
|
288 |
+
clip_grad=0.1,
|
289 |
+
dataset='nyu',
|
290 |
+
depth_anything=True,
|
291 |
+
distributed=True,
|
292 |
+
do_resize=False,
|
293 |
+
force_keep_ar=True,
|
294 |
+
freeze_midas_bn=True,
|
295 |
+
gpu='NULL',
|
296 |
+
img_size=[
|
297 |
+
392,
|
298 |
+
518,
|
299 |
+
],
|
300 |
+
inverse_midas=False,
|
301 |
+
log_images_every=0.1,
|
302 |
+
max_depth=80,
|
303 |
+
max_temp=50.0,
|
304 |
+
max_translation=100,
|
305 |
+
memory_efficient=True,
|
306 |
+
midas_model_type='vits',
|
307 |
+
min_depth=0.001,
|
308 |
+
min_temp=0.0212,
|
309 |
+
model='zoedepth',
|
310 |
+
n_attractors=[
|
311 |
+
16,
|
312 |
+
8,
|
313 |
+
4,
|
314 |
+
1,
|
315 |
+
],
|
316 |
+
n_bins=64,
|
317 |
+
name='ZoeDepth',
|
318 |
+
notes='',
|
319 |
+
output_distribution='logbinomial',
|
320 |
+
prefetch=False,
|
321 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
322 |
+
print_losses=False,
|
323 |
+
project='ZoeDepth',
|
324 |
+
random_crop=False,
|
325 |
+
random_translate=False,
|
326 |
+
root='.',
|
327 |
+
save_dir='',
|
328 |
+
shared_dict='NULL',
|
329 |
+
tags='',
|
330 |
+
train_midas=True,
|
331 |
+
translate_prob=0.2,
|
332 |
+
type='DA-ZoeDepth',
|
333 |
+
uid='NULL',
|
334 |
+
use_amp=False,
|
335 |
+
use_pretrained_midas=True,
|
336 |
+
use_shared_dict=False,
|
337 |
+
validate_every=0.25,
|
338 |
+
version_name='v1',
|
339 |
+
workers=16)
|
340 |
+
|
341 |
+
2024/03/15 00:20:41 - patchstitcher - INFO - Loading deepnet from local::./work_dir/DepthAnything_vits.pt
|
342 |
+
2024/03/15 00:20:41 - patchstitcher - INFO - Current zoedepth.core.prep.resizer is <class 'torch.nn.modules.linear.Identity'>
|
343 |
+
2024/03/15 00:20:42 - patchstitcher - INFO - DistributedDataParallel(
|
344 |
+
(module): BaselinePretrain(
|
345 |
+
(coarse_branch): ZoeDepth(
|
346 |
+
(core): DepthAnythingCore(
|
347 |
+
(core): DPT_DINOv2(
|
348 |
+
(pretrained): DinoVisionTransformer(
|
349 |
+
(patch_embed): PatchEmbed(
|
350 |
+
(proj): Conv2d(3, 384, kernel_size=(14, 14), stride=(14, 14))
|
351 |
+
(norm): Identity()
|
352 |
+
)
|
353 |
+
(blocks): ModuleList(
|
354 |
+
(0-11): 12 x NestedTensorBlock(
|
355 |
+
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
|
356 |
+
(attn): MemEffAttention(
|
357 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
358 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
359 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
360 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
361 |
+
)
|
362 |
+
(ls1): LayerScale()
|
363 |
+
(drop_path1): Identity()
|
364 |
+
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
|
365 |
+
(mlp): Mlp(
|
366 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
367 |
+
(act): GELU(approximate='none')
|
368 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
369 |
+
(drop): Dropout(p=0.0, inplace=False)
|
370 |
+
)
|
371 |
+
(ls2): LayerScale()
|
372 |
+
(drop_path2): Identity()
|
373 |
+
)
|
374 |
+
)
|
375 |
+
(norm): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
|
376 |
+
(head): Identity()
|
377 |
+
)
|
378 |
+
(depth_head): DPTHead(
|
379 |
+
(projects): ModuleList(
|
380 |
+
(0): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1))
|
381 |
+
(1): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))
|
382 |
+
(2): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))
|
383 |
+
(3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))
|
384 |
+
)
|
385 |
+
(resize_layers): ModuleList(
|
386 |
+
(0): ConvTranspose2d(48, 48, kernel_size=(4, 4), stride=(4, 4))
|
387 |
+
(1): ConvTranspose2d(96, 96, kernel_size=(2, 2), stride=(2, 2))
|
388 |
+
(2): Identity()
|
389 |
+
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
390 |
+
)
|
391 |
+
(scratch): Module(
|
392 |
+
(layer1_rn): Conv2d(48, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
393 |
+
(layer2_rn): Conv2d(96, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
394 |
+
(layer3_rn): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
395 |
+
(layer4_rn): Conv2d(384, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
396 |
+
(refinenet1): FeatureFusionBlock(
|
397 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
398 |
+
(resConfUnit1): ResidualConvUnit(
|
399 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
400 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
401 |
+
(activation): ReLU()
|
402 |
+
(skip_add): FloatFunctional(
|
403 |
+
(activation_post_process): Identity()
|
404 |
+
)
|
405 |
+
)
|
406 |
+
(resConfUnit2): ResidualConvUnit(
|
407 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
408 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
409 |
+
(activation): ReLU()
|
410 |
+
(skip_add): FloatFunctional(
|
411 |
+
(activation_post_process): Identity()
|
412 |
+
)
|
413 |
+
)
|
414 |
+
(skip_add): FloatFunctional(
|
415 |
+
(activation_post_process): Identity()
|
416 |
+
)
|
417 |
+
)
|
418 |
+
(refinenet2): FeatureFusionBlock(
|
419 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
420 |
+
(resConfUnit1): ResidualConvUnit(
|
421 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
422 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
423 |
+
(activation): ReLU()
|
424 |
+
(skip_add): FloatFunctional(
|
425 |
+
(activation_post_process): Identity()
|
426 |
+
)
|
427 |
+
)
|
428 |
+
(resConfUnit2): ResidualConvUnit(
|
429 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
430 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
431 |
+
(activation): ReLU()
|
432 |
+
(skip_add): FloatFunctional(
|
433 |
+
(activation_post_process): Identity()
|
434 |
+
)
|
435 |
+
)
|
436 |
+
(skip_add): FloatFunctional(
|
437 |
+
(activation_post_process): Identity()
|
438 |
+
)
|
439 |
+
)
|
440 |
+
(refinenet3): FeatureFusionBlock(
|
441 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
442 |
+
(resConfUnit1): ResidualConvUnit(
|
443 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
444 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
445 |
+
(activation): ReLU()
|
446 |
+
(skip_add): FloatFunctional(
|
447 |
+
(activation_post_process): Identity()
|
448 |
+
)
|
449 |
+
)
|
450 |
+
(resConfUnit2): ResidualConvUnit(
|
451 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
452 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
453 |
+
(activation): ReLU()
|
454 |
+
(skip_add): FloatFunctional(
|
455 |
+
(activation_post_process): Identity()
|
456 |
+
)
|
457 |
+
)
|
458 |
+
(skip_add): FloatFunctional(
|
459 |
+
(activation_post_process): Identity()
|
460 |
+
)
|
461 |
+
)
|
462 |
+
(refinenet4): FeatureFusionBlock(
|
463 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
464 |
+
(resConfUnit1): ResidualConvUnit(
|
465 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
466 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
467 |
+
(activation): ReLU()
|
468 |
+
(skip_add): FloatFunctional(
|
469 |
+
(activation_post_process): Identity()
|
470 |
+
)
|
471 |
+
)
|
472 |
+
(resConfUnit2): ResidualConvUnit(
|
473 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
474 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
475 |
+
(activation): ReLU()
|
476 |
+
(skip_add): FloatFunctional(
|
477 |
+
(activation_post_process): Identity()
|
478 |
+
)
|
479 |
+
)
|
480 |
+
(skip_add): FloatFunctional(
|
481 |
+
(activation_post_process): Identity()
|
482 |
+
)
|
483 |
+
)
|
484 |
+
(output_conv1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
485 |
+
(output_conv2): Sequential(
|
486 |
+
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
487 |
+
(1): ReLU(inplace=True)
|
488 |
+
(2): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
|
489 |
+
(3): ReLU(inplace=True)
|
490 |
+
(4): Identity()
|
491 |
+
)
|
492 |
+
)
|
493 |
+
)
|
494 |
+
)
|
495 |
+
)
|
496 |
+
(conv2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
497 |
+
(seed_bin_regressor): SeedBinRegressorUnnormed(
|
498 |
+
(_net): Sequential(
|
499 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
500 |
+
(1): ReLU(inplace=True)
|
501 |
+
(2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
502 |
+
(3): Softplus(beta=1, threshold=20)
|
503 |
+
)
|
504 |
+
)
|
505 |
+
(seed_projector): Projector(
|
506 |
+
(_net): Sequential(
|
507 |
+
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
|
508 |
+
(1): ReLU(inplace=True)
|
509 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
510 |
+
)
|
511 |
+
)
|
512 |
+
(projectors): ModuleList(
|
513 |
+
(0-3): 4 x Projector(
|
514 |
+
(_net): Sequential(
|
515 |
+
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
|
516 |
+
(1): ReLU(inplace=True)
|
517 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
518 |
+
)
|
519 |
+
)
|
520 |
+
)
|
521 |
+
(attractors): ModuleList(
|
522 |
+
(0): AttractorLayerUnnormed(
|
523 |
+
(_net): Sequential(
|
524 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
525 |
+
(1): ReLU(inplace=True)
|
526 |
+
(2): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
|
527 |
+
(3): Softplus(beta=1, threshold=20)
|
528 |
+
)
|
529 |
+
)
|
530 |
+
(1): AttractorLayerUnnormed(
|
531 |
+
(_net): Sequential(
|
532 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
533 |
+
(1): ReLU(inplace=True)
|
534 |
+
(2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
|
535 |
+
(3): Softplus(beta=1, threshold=20)
|
536 |
+
)
|
537 |
+
)
|
538 |
+
(2): AttractorLayerUnnormed(
|
539 |
+
(_net): Sequential(
|
540 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
541 |
+
(1): ReLU(inplace=True)
|
542 |
+
(2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
|
543 |
+
(3): Softplus(beta=1, threshold=20)
|
544 |
+
)
|
545 |
+
)
|
546 |
+
(3): AttractorLayerUnnormed(
|
547 |
+
(_net): Sequential(
|
548 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
549 |
+
(1): ReLU(inplace=True)
|
550 |
+
(2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
|
551 |
+
(3): Softplus(beta=1, threshold=20)
|
552 |
+
)
|
553 |
+
)
|
554 |
+
)
|
555 |
+
(conditional_log_binomial): ConditionalLogBinomial(
|
556 |
+
(log_binomial_transform): LogBinomial()
|
557 |
+
(mlp): Sequential(
|
558 |
+
(0): Conv2d(161, 80, kernel_size=(1, 1), stride=(1, 1))
|
559 |
+
(1): GELU(approximate='none')
|
560 |
+
(2): Conv2d(80, 4, kernel_size=(1, 1), stride=(1, 1))
|
561 |
+
(3): Softplus(beta=1, threshold=20)
|
562 |
+
)
|
563 |
+
)
|
564 |
+
)
|
565 |
+
(sigloss): SILogLoss()
|
566 |
+
)
|
567 |
+
)
|
568 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - successfully init trainer
|
569 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.cls_token
|
570 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.pos_embed
|
571 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.mask_token
|
572 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.patch_embed.proj.weight
|
573 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.patch_embed.proj.bias
|
574 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm1.weight
|
575 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm1.bias
|
576 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.qkv.weight
|
577 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.qkv.bias
|
578 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.proj.weight
|
579 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.attn.proj.bias
|
580 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.ls1.gamma
|
581 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm2.weight
|
582 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.norm2.bias
|
583 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc1.weight
|
584 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc1.bias
|
585 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc2.weight
|
586 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.mlp.fc2.bias
|
587 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.0.ls2.gamma
|
588 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm1.weight
|
589 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm1.bias
|
590 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.qkv.weight
|
591 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.qkv.bias
|
592 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.proj.weight
|
593 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.attn.proj.bias
|
594 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.ls1.gamma
|
595 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm2.weight
|
596 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.norm2.bias
|
597 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc1.weight
|
598 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc1.bias
|
599 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc2.weight
|
600 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.mlp.fc2.bias
|
601 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.1.ls2.gamma
|
602 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm1.weight
|
603 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm1.bias
|
604 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.qkv.weight
|
605 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.qkv.bias
|
606 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.proj.weight
|
607 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.attn.proj.bias
|
608 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.ls1.gamma
|
609 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm2.weight
|
610 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.norm2.bias
|
611 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc1.weight
|
612 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc1.bias
|
613 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc2.weight
|
614 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.mlp.fc2.bias
|
615 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.2.ls2.gamma
|
616 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm1.weight
|
617 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm1.bias
|
618 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.qkv.weight
|
619 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.qkv.bias
|
620 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.proj.weight
|
621 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.attn.proj.bias
|
622 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.ls1.gamma
|
623 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm2.weight
|
624 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.norm2.bias
|
625 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc1.weight
|
626 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc1.bias
|
627 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc2.weight
|
628 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.mlp.fc2.bias
|
629 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.3.ls2.gamma
|
630 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm1.weight
|
631 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm1.bias
|
632 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.qkv.weight
|
633 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.qkv.bias
|
634 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.proj.weight
|
635 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.attn.proj.bias
|
636 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.ls1.gamma
|
637 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm2.weight
|
638 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.norm2.bias
|
639 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc1.weight
|
640 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc1.bias
|
641 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc2.weight
|
642 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.mlp.fc2.bias
|
643 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.4.ls2.gamma
|
644 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm1.weight
|
645 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm1.bias
|
646 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.qkv.weight
|
647 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.qkv.bias
|
648 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.proj.weight
|
649 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.attn.proj.bias
|
650 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.ls1.gamma
|
651 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm2.weight
|
652 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.norm2.bias
|
653 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc1.weight
|
654 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc1.bias
|
655 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc2.weight
|
656 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.mlp.fc2.bias
|
657 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.5.ls2.gamma
|
658 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm1.weight
|
659 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm1.bias
|
660 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.qkv.weight
|
661 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.qkv.bias
|
662 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.proj.weight
|
663 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.attn.proj.bias
|
664 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.ls1.gamma
|
665 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm2.weight
|
666 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.norm2.bias
|
667 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc1.weight
|
668 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc1.bias
|
669 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc2.weight
|
670 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.mlp.fc2.bias
|
671 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.6.ls2.gamma
|
672 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm1.weight
|
673 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm1.bias
|
674 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.qkv.weight
|
675 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.qkv.bias
|
676 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.proj.weight
|
677 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.attn.proj.bias
|
678 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.ls1.gamma
|
679 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm2.weight
|
680 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.norm2.bias
|
681 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc1.weight
|
682 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc1.bias
|
683 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc2.weight
|
684 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.mlp.fc2.bias
|
685 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.7.ls2.gamma
|
686 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm1.weight
|
687 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm1.bias
|
688 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.qkv.weight
|
689 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.qkv.bias
|
690 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.proj.weight
|
691 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.attn.proj.bias
|
692 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.ls1.gamma
|
693 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm2.weight
|
694 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.norm2.bias
|
695 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc1.weight
|
696 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc1.bias
|
697 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc2.weight
|
698 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.mlp.fc2.bias
|
699 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.8.ls2.gamma
|
700 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm1.weight
|
701 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm1.bias
|
702 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.qkv.weight
|
703 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.qkv.bias
|
704 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.proj.weight
|
705 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.attn.proj.bias
|
706 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.ls1.gamma
|
707 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm2.weight
|
708 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.norm2.bias
|
709 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc1.weight
|
710 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc1.bias
|
711 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc2.weight
|
712 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.mlp.fc2.bias
|
713 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.9.ls2.gamma
|
714 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm1.weight
|
715 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm1.bias
|
716 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.qkv.weight
|
717 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.qkv.bias
|
718 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.proj.weight
|
719 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.attn.proj.bias
|
720 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.ls1.gamma
|
721 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm2.weight
|
722 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.norm2.bias
|
723 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc1.weight
|
724 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc1.bias
|
725 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc2.weight
|
726 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.mlp.fc2.bias
|
727 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.10.ls2.gamma
|
728 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm1.weight
|
729 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm1.bias
|
730 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.qkv.weight
|
731 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.qkv.bias
|
732 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.proj.weight
|
733 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.attn.proj.bias
|
734 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.ls1.gamma
|
735 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm2.weight
|
736 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.norm2.bias
|
737 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc1.weight
|
738 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc1.bias
|
739 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc2.weight
|
740 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.mlp.fc2.bias
|
741 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.blocks.11.ls2.gamma
|
742 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.norm.weight
|
743 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.pretrained.norm.bias
|
744 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.0.weight
|
745 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.0.bias
|
746 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.1.weight
|
747 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.1.bias
|
748 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.2.weight
|
749 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.2.bias
|
750 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.3.weight
|
751 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.projects.3.bias
|
752 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.0.weight
|
753 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.0.bias
|
754 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.1.weight
|
755 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.1.bias
|
756 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.3.weight
|
757 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.resize_layers.3.bias
|
758 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer1_rn.weight
|
759 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer2_rn.weight
|
760 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer3_rn.weight
|
761 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.layer4_rn.weight
|
762 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.out_conv.weight
|
763 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.out_conv.bias
|
764 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.weight
|
765 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.bias
|
766 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.weight
|
767 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.bias
|
768 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.weight
|
769 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.bias
|
770 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.weight
|
771 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.bias
|
772 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.out_conv.weight
|
773 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.out_conv.bias
|
774 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.weight
|
775 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.bias
|
776 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.weight
|
777 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.bias
|
778 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.weight
|
779 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.bias
|
780 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.weight
|
781 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.bias
|
782 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.out_conv.weight
|
783 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.out_conv.bias
|
784 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.weight
|
785 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.bias
|
786 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.weight
|
787 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.bias
|
788 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.weight
|
789 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.bias
|
790 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.weight
|
791 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.bias
|
792 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.out_conv.weight
|
793 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.out_conv.bias
|
794 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.weight
|
795 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.bias
|
796 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.weight
|
797 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.bias
|
798 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.weight
|
799 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.bias
|
800 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.weight
|
801 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.bias
|
802 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv1.weight
|
803 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv1.bias
|
804 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.0.weight
|
805 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.0.bias
|
806 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.2.weight
|
807 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.core.core.depth_head.scratch.output_conv2.2.bias
|
808 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conv2.weight
|
809 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conv2.bias
|
810 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.0.weight
|
811 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.0.bias
|
812 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.2.weight
|
813 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_bin_regressor._net.2.bias
|
814 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.0.weight
|
815 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.0.bias
|
816 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.2.weight
|
817 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.seed_projector._net.2.bias
|
818 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.0.weight
|
819 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.0.bias
|
820 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.2.weight
|
821 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.0._net.2.bias
|
822 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.0.weight
|
823 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.0.bias
|
824 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.2.weight
|
825 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.1._net.2.bias
|
826 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.0.weight
|
827 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.0.bias
|
828 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.2.weight
|
829 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.2._net.2.bias
|
830 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.0.weight
|
831 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.0.bias
|
832 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.2.weight
|
833 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.projectors.3._net.2.bias
|
834 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.0.weight
|
835 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.0.bias
|
836 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.2.weight
|
837 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.0._net.2.bias
|
838 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.0.weight
|
839 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.0.bias
|
840 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.2.weight
|
841 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.1._net.2.bias
|
842 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.0.weight
|
843 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.0.bias
|
844 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.2.weight
|
845 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.2._net.2.bias
|
846 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.0.weight
|
847 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.0.bias
|
848 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.2.weight
|
849 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.attractors.3._net.2.bias
|
850 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.0.weight
|
851 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.0.bias
|
852 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.2.weight
|
853 |
+
2024/03/15 00:20:47 - patchstitcher - INFO - training param: module.coarse_branch.conditional_log_binomial.mlp.2.bias
|
854 |
+
2024/03/15 00:23:05 - patchstitcher - INFO - Epoch: [01/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.218886375427246 - coarse_loss: 2.218886375427246
|
855 |
+
2024/03/15 00:24:52 - patchstitcher - INFO - Epoch: [01/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.0132031440734863 - coarse_loss: 2.0132031440734863
|
856 |
+
2024/03/15 00:26:41 - patchstitcher - INFO - Epoch: [01/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.1340489387512207 - coarse_loss: 2.1340489387512207
|
857 |
+
2024/03/15 00:28:31 - patchstitcher - INFO - Epoch: [01/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.68356192111969 - coarse_loss: 1.68356192111969
|
858 |
+
2024/03/15 00:31:46 - patchstitcher - INFO - Epoch: [02/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1240144968032837 - coarse_loss: 1.1240144968032837
|
859 |
+
2024/03/15 00:33:37 - patchstitcher - INFO - Epoch: [02/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.2552540302276611 - coarse_loss: 1.2552540302276611
|
860 |
+
2024/03/15 00:35:27 - patchstitcher - INFO - Epoch: [02/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3931670188903809 - coarse_loss: 1.3931670188903809
|
861 |
+
2024/03/15 00:37:17 - patchstitcher - INFO - Epoch: [02/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4315416812896729 - coarse_loss: 1.4315416812896729
|
862 |
+
2024/03/15 00:38:56 - patchstitcher - INFO - Evaluation Summary:
|
863 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
864 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
865 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
866 |
+
| 0.9222131 | 0.9841732 | 0.9937032 | 0.0942684 | 1.901311 | 0.0392215 | 0.1319014 | 11.5870857 | 0.3169146 | 1.4523976 |
|
867 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
868 |
+
2024/03/15 00:40:53 - patchstitcher - INFO - Epoch: [03/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3891286849975586 - coarse_loss: 1.3891286849975586
|
869 |
+
2024/03/15 00:42:45 - patchstitcher - INFO - Epoch: [03/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.3853542804718018 - coarse_loss: 1.3853542804718018
|
870 |
+
2024/03/15 00:44:31 - patchstitcher - INFO - Epoch: [03/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6085820198059082 - coarse_loss: 1.6085820198059082
|
871 |
+
2024/03/15 00:46:24 - patchstitcher - INFO - Epoch: [03/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2743269205093384 - coarse_loss: 1.2743269205093384
|
872 |
+
2024/03/15 00:49:33 - patchstitcher - INFO - Epoch: [04/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4644969701766968 - coarse_loss: 1.4644969701766968
|
873 |
+
2024/03/15 00:51:20 - patchstitcher - INFO - Epoch: [04/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.040415644645691 - coarse_loss: 1.040415644645691
|
874 |
+
2024/03/15 00:53:07 - patchstitcher - INFO - Epoch: [04/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.2523736953735352 - coarse_loss: 1.2523736953735352
|
875 |
+
2024/03/15 00:54:57 - patchstitcher - INFO - Epoch: [04/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7893640995025635 - coarse_loss: 0.7893640995025635
|
876 |
+
2024/03/15 00:56:31 - patchstitcher - INFO - Evaluation Summary:
|
877 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
878 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
879 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
880 |
+
| 0.9466366 | 0.9857079 | 0.9944696 | 0.0784504 | 1.723246 | 0.0331783 | 0.1166779 | 10.4672395 | 0.2658952 | 1.2480133 |
|
881 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|
882 |
+
2024/03/15 00:58:25 - patchstitcher - INFO - Epoch: [05/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8934182524681091 - coarse_loss: 0.8934182524681091
|
883 |
+
2024/03/15 01:00:10 - patchstitcher - INFO - Epoch: [05/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0365135669708252 - coarse_loss: 1.0365135669708252
|
884 |
+
2024/03/15 01:02:00 - patchstitcher - INFO - Epoch: [05/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0158889293670654 - coarse_loss: 1.0158889293670654
|
885 |
+
2024/03/15 01:03:50 - patchstitcher - INFO - Epoch: [05/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7366129159927368 - coarse_loss: 0.7366129159927368
|
886 |
+
2024/03/15 01:07:04 - patchstitcher - INFO - Epoch: [06/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4556183815002441 - coarse_loss: 1.4556183815002441
|
887 |
+
2024/03/15 01:08:51 - patchstitcher - INFO - Epoch: [06/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.093213677406311 - coarse_loss: 1.093213677406311
|
888 |
+
2024/03/15 01:10:45 - patchstitcher - INFO - Epoch: [06/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8329901099205017 - coarse_loss: 0.8329901099205017
|
889 |
+
2024/03/15 01:12:32 - patchstitcher - INFO - Epoch: [06/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.8255199193954468 - coarse_loss: 0.8255199193954468
|
890 |
+
2024/03/15 01:14:05 - patchstitcher - INFO - Evaluation Summary:
|
891 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
892 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
893 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
894 |
+
| 0.9492006 | 0.9876058 | 0.9947174 | 0.0765434 | 1.6623389 | 0.0336977 | 0.1157899 | 10.168448 | 0.2274059 | 1.1601292 |
|
895 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
896 |
+
2024/03/15 01:16:01 - patchstitcher - INFO - Epoch: [07/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9320656061172485 - coarse_loss: 0.9320656061172485
|
897 |
+
2024/03/15 01:17:44 - patchstitcher - INFO - Epoch: [07/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.3558683395385742 - coarse_loss: 1.3558683395385742
|
898 |
+
2024/03/15 01:19:36 - patchstitcher - INFO - Epoch: [07/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.1851251125335693 - coarse_loss: 1.1851251125335693
|
899 |
+
2024/03/15 01:21:28 - patchstitcher - INFO - Epoch: [07/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7694360613822937 - coarse_loss: 0.7694360613822937
|
900 |
+
2024/03/15 01:24:39 - patchstitcher - INFO - Epoch: [08/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9268642067909241 - coarse_loss: 0.9268642067909241
|
901 |
+
2024/03/15 01:26:28 - patchstitcher - INFO - Epoch: [08/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0070387125015259 - coarse_loss: 1.0070387125015259
|
902 |
+
2024/03/15 01:28:17 - patchstitcher - INFO - Epoch: [08/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3363308906555176 - coarse_loss: 1.3363308906555176
|
903 |
+
2024/03/15 01:30:03 - patchstitcher - INFO - Epoch: [08/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.549015998840332 - coarse_loss: 1.549015998840332
|
904 |
+
2024/03/15 01:31:38 - patchstitcher - INFO - Evaluation Summary:
|
905 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+
|
906 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
907 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+
|
908 |
+
| 0.9580896 | 0.9882235 | 0.9949475 | 0.0697348 | 1.6023046 | 0.0295156 | 0.1067427 | 9.6755001 | 0.224005 | 1.1545794 |
|
909 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+
|
910 |
+
2024/03/15 01:33:33 - patchstitcher - INFO - Epoch: [09/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2725939750671387 - coarse_loss: 1.2725939750671387
|
911 |
+
2024/03/15 01:35:25 - patchstitcher - INFO - Epoch: [09/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.8319188356399536 - coarse_loss: 1.8319188356399536
|
912 |
+
2024/03/15 01:37:16 - patchstitcher - INFO - Epoch: [09/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9146164655685425 - coarse_loss: 0.9146164655685425
|
913 |
+
2024/03/15 01:39:08 - patchstitcher - INFO - Epoch: [09/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9933633208274841 - coarse_loss: 0.9933633208274841
|
914 |
+
2024/03/15 01:42:21 - patchstitcher - INFO - Epoch: [10/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.531670331954956 - coarse_loss: 0.531670331954956
|
915 |
+
2024/03/15 01:44:13 - patchstitcher - INFO - Epoch: [10/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.98005211353302 - coarse_loss: 0.98005211353302
|
916 |
+
2024/03/15 01:46:08 - patchstitcher - INFO - Epoch: [10/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.562972068786621 - coarse_loss: 1.562972068786621
|
917 |
+
2024/03/15 01:48:00 - patchstitcher - INFO - Epoch: [10/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0578055381774902 - coarse_loss: 1.0578055381774902
|
918 |
+
2024/03/15 01:49:39 - patchstitcher - INFO - Evaluation Summary:
|
919 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+--------+-----------+-----------+
|
920 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
921 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+--------+-----------+-----------+
|
922 |
+
| 0.9573399 | 0.9884624 | 0.9949526 | 0.0727779 | 1.5619678 | 0.030998 | 0.1089102 | 9.5524 | 0.2075647 | 1.1259904 |
|
923 |
+
+-----------+-----------+-----------+-----------+-----------+----------+-----------+--------+-----------+-----------+
|
924 |
+
2024/03/15 01:51:35 - patchstitcher - INFO - Epoch: [11/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9536416530609131 - coarse_loss: 0.9536416530609131
|
925 |
+
2024/03/15 01:53:33 - patchstitcher - INFO - Epoch: [11/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.061272382736206 - coarse_loss: 1.061272382736206
|
926 |
+
2024/03/15 01:55:27 - patchstitcher - INFO - Epoch: [11/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.403846263885498 - coarse_loss: 1.403846263885498
|
927 |
+
2024/03/15 01:57:19 - patchstitcher - INFO - Epoch: [11/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6634379625320435 - coarse_loss: 0.6634379625320435
|
928 |
+
2024/03/15 02:00:39 - patchstitcher - INFO - Epoch: [12/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7105982303619385 - coarse_loss: 0.7105982303619385
|
929 |
+
2024/03/15 02:02:34 - patchstitcher - INFO - Epoch: [12/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8706010580062866 - coarse_loss: 0.8706010580062866
|
930 |
+
2024/03/15 02:04:29 - patchstitcher - INFO - Epoch: [12/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.013525366783142 - coarse_loss: 1.013525366783142
|
931 |
+
2024/03/15 02:06:17 - patchstitcher - INFO - Epoch: [12/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9357657432556152 - coarse_loss: 0.9357657432556152
|
932 |
+
2024/03/15 02:07:50 - patchstitcher - INFO - Evaluation Summary:
|
933 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
934 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
935 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
936 |
+
| 0.9572283 | 0.9886936 | 0.9950871 | 0.0731142 | 1.5668887 | 0.0308406 | 0.1077591 | 9.5263897 | 0.2176418 | 1.1755943 |
|
937 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
938 |
+
2024/03/15 02:09:47 - patchstitcher - INFO - Epoch: [13/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4000838994979858 - coarse_loss: 1.4000838994979858
|
939 |
+
2024/03/15 02:11:41 - patchstitcher - INFO - Epoch: [13/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.147301435470581 - coarse_loss: 1.147301435470581
|
940 |
+
2024/03/15 02:13:39 - patchstitcher - INFO - Epoch: [13/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9417784214019775 - coarse_loss: 0.9417784214019775
|
941 |
+
2024/03/15 02:15:36 - patchstitcher - INFO - Epoch: [13/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.898872971534729 - coarse_loss: 0.898872971534729
|
942 |
+
2024/03/15 02:18:53 - patchstitcher - INFO - Epoch: [14/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6218137741088867 - coarse_loss: 0.6218137741088867
|
943 |
+
2024/03/15 02:20:49 - patchstitcher - INFO - Epoch: [14/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9591147303581238 - coarse_loss: 0.9591147303581238
|
944 |
+
2024/03/15 02:22:42 - patchstitcher - INFO - Epoch: [14/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7330798506736755 - coarse_loss: 0.7330798506736755
|
945 |
+
2024/03/15 02:24:37 - patchstitcher - INFO - Epoch: [14/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.671249508857727 - coarse_loss: 0.671249508857727
|
946 |
+
2024/03/15 02:26:12 - patchstitcher - INFO - Evaluation Summary:
|
947 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
948 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
949 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
950 |
+
| 0.9656246 | 0.9891472 | 0.9951051 | 0.0614303 | 1.5103214 | 0.0264747 | 0.1001097 | 9.4011921 | 0.1946697 | 1.0991172 |
|
951 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
952 |
+
2024/03/15 02:28:10 - patchstitcher - INFO - Epoch: [15/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7798411846160889 - coarse_loss: 0.7798411846160889
|
953 |
+
2024/03/15 02:30:02 - patchstitcher - INFO - Epoch: [15/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9757544994354248 - coarse_loss: 0.9757544994354248
|
954 |
+
2024/03/15 02:31:49 - patchstitcher - INFO - Epoch: [15/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.1485944986343384 - coarse_loss: 1.1485944986343384
|
955 |
+
2024/03/15 02:33:42 - patchstitcher - INFO - Epoch: [15/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.8730670809745789 - coarse_loss: 0.8730670809745789
|
956 |
+
2024/03/15 02:36:57 - patchstitcher - INFO - Epoch: [16/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0859500169754028 - coarse_loss: 1.0859500169754028
|
957 |
+
2024/03/15 02:38:46 - patchstitcher - INFO - Epoch: [16/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9123729467391968 - coarse_loss: 0.9123729467391968
|
958 |
+
2024/03/15 02:40:36 - patchstitcher - INFO - Epoch: [16/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0700657367706299 - coarse_loss: 1.0700657367706299
|
959 |
+
2024/03/15 02:42:24 - patchstitcher - INFO - Epoch: [16/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.8393980264663696 - coarse_loss: 1.8393980264663696
|
960 |
+
2024/03/15 02:43:58 - patchstitcher - INFO - Evaluation Summary:
|
961 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+
|
962 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
963 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+
|
964 |
+
| 0.9678091 | 0.9892931 | 0.9952321 | 0.0607629 | 1.488932 | 0.0257705 | 0.0981663 | 9.0934609 | 0.1966839 | 1.0878515 |
|
965 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+
|
966 |
+
2024/03/15 02:45:51 - patchstitcher - INFO - Epoch: [17/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7053128480911255 - coarse_loss: 0.7053128480911255
|
967 |
+
2024/03/15 02:47:43 - patchstitcher - INFO - Epoch: [17/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9886703491210938 - coarse_loss: 0.9886703491210938
|
968 |
+
2024/03/15 02:49:32 - patchstitcher - INFO - Epoch: [17/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.180053949356079 - coarse_loss: 1.180053949356079
|
969 |
+
2024/03/15 02:51:22 - patchstitcher - INFO - Epoch: [17/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.316230297088623 - coarse_loss: 1.316230297088623
|
970 |
+
2024/03/15 02:54:39 - patchstitcher - INFO - Epoch: [18/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7665231227874756 - coarse_loss: 0.7665231227874756
|
971 |
+
2024/03/15 02:56:30 - patchstitcher - INFO - Epoch: [18/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6590834856033325 - coarse_loss: 0.6590834856033325
|
972 |
+
2024/03/15 02:58:17 - patchstitcher - INFO - Epoch: [18/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9268083572387695 - coarse_loss: 0.9268083572387695
|
973 |
+
2024/03/15 03:00:07 - patchstitcher - INFO - Epoch: [18/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.255874752998352 - coarse_loss: 1.255874752998352
|
974 |
+
2024/03/15 03:01:42 - patchstitcher - INFO - Evaluation Summary:
|
975 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
976 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
977 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
978 |
+
| 0.9691702 | 0.9894969 | 0.9952754 | 0.0559551 | 1.4743834 | 0.0240017 | 0.0943829 | 8.8561864 | 0.1819411 | 1.0395958 |
|
979 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
980 |
+
2024/03/15 03:03:35 - patchstitcher - INFO - Epoch: [19/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6205350756645203 - coarse_loss: 0.6205350756645203
|
981 |
+
2024/03/15 03:05:29 - patchstitcher - INFO - Epoch: [19/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6529569625854492 - coarse_loss: 0.6529569625854492
|
982 |
+
2024/03/15 03:07:18 - patchstitcher - INFO - Epoch: [19/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8907508850097656 - coarse_loss: 0.8907508850097656
|
983 |
+
2024/03/15 03:09:13 - patchstitcher - INFO - Epoch: [19/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5823774337768555 - coarse_loss: 0.5823774337768555
|
984 |
+
2024/03/15 03:12:22 - patchstitcher - INFO - Epoch: [20/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3379265069961548 - coarse_loss: 1.3379265069961548
|
985 |
+
2024/03/15 03:14:13 - patchstitcher - INFO - Epoch: [20/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.615516185760498 - coarse_loss: 0.615516185760498
|
986 |
+
2024/03/15 03:16:04 - patchstitcher - INFO - Epoch: [20/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5864847302436829 - coarse_loss: 0.5864847302436829
|
987 |
+
2024/03/15 03:17:54 - patchstitcher - INFO - Epoch: [20/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9669459462165833 - coarse_loss: 0.9669459462165833
|
988 |
+
2024/03/15 03:19:29 - patchstitcher - INFO - Evaluation Summary:
|
989 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
990 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
991 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
992 |
+
| 0.9697102 | 0.9895742 | 0.9953449 | 0.0539071 | 1.4497501 | 0.0229091 | 0.0925752 | 8.7784555 | 0.1802817 | 1.0580258 |
|
993 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
994 |
+
2024/03/15 03:21:25 - patchstitcher - INFO - Epoch: [21/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9557666778564453 - coarse_loss: 0.9557666778564453
|
995 |
+
2024/03/15 03:23:15 - patchstitcher - INFO - Epoch: [21/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6958411931991577 - coarse_loss: 0.6958411931991577
|
996 |
+
2024/03/15 03:25:01 - patchstitcher - INFO - Epoch: [21/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5607629418373108 - coarse_loss: 0.5607629418373108
|
997 |
+
2024/03/15 03:26:54 - patchstitcher - INFO - Epoch: [21/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.8118071556091309 - coarse_loss: 1.8118071556091309
|
998 |
+
2024/03/15 03:30:05 - patchstitcher - INFO - Epoch: [22/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0183720588684082 - coarse_loss: 1.0183720588684082
|
999 |
+
2024/03/15 03:31:53 - patchstitcher - INFO - Epoch: [22/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0083253383636475 - coarse_loss: 1.0083253383636475
|
1000 |
+
2024/03/15 03:33:45 - patchstitcher - INFO - Epoch: [22/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5852430462837219 - coarse_loss: 0.5852430462837219
|
1001 |
+
2024/03/15 03:35:35 - patchstitcher - INFO - Epoch: [22/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.8135958909988403 - coarse_loss: 0.8135958909988403
|
1002 |
+
2024/03/15 03:37:10 - patchstitcher - INFO - Evaluation Summary:
|
1003 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1004 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1005 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1006 |
+
| 0.9699838 | 0.9896694 | 0.9953757 | 0.0526183 | 1.4463599 | 0.0224501 | 0.0915034 | 8.7251583 | 0.1771403 | 1.0479052 |
|
1007 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|
1008 |
+
2024/03/15 03:39:04 - patchstitcher - INFO - Epoch: [23/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6198912262916565 - coarse_loss: 0.6198912262916565
|
1009 |
+
2024/03/15 03:40:57 - patchstitcher - INFO - Epoch: [23/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.1995759010314941 - coarse_loss: 1.1995759010314941
|
1010 |
+
2024/03/15 03:42:47 - patchstitcher - INFO - Epoch: [23/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.7696393728256226 - coarse_loss: 1.7696393728256226
|
1011 |
+
2024/03/15 03:44:34 - patchstitcher - INFO - Epoch: [23/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4660639762878418 - coarse_loss: 1.4660639762878418
|
1012 |
+
2024/03/15 03:47:48 - patchstitcher - INFO - Epoch: [24/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9167467355728149 - coarse_loss: 0.9167467355728149
|
1013 |
+
2024/03/15 03:49:40 - patchstitcher - INFO - Epoch: [24/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6638955473899841 - coarse_loss: 0.6638955473899841
|
1014 |
+
2024/03/15 03:51:31 - patchstitcher - INFO - Epoch: [24/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.4969237446784973 - coarse_loss: 0.4969237446784973
|
1015 |
+
2024/03/15 03:53:18 - patchstitcher - INFO - Epoch: [24/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5059656500816345 - coarse_loss: 0.5059656500816345
|
1016 |
+
2024/03/15 03:54:52 - patchstitcher - INFO - Evaluation Summary:
|
1017 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
1018 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1019 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
1020 |
+
| 0.9701259 | 0.9896677 | 0.9953767 | 0.0521426 | 1.4457442 | 0.0222779 | 0.0914182 | 8.7319618 | 0.1776046 | 1.046505 |
|
1021 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
1022 |
+
2024/03/15 03:54:52 - patchstitcher - INFO - Saving ckp, but use the inner get_save_dict fuction to get model_dict
|
1023 |
+
2024/03/15 03:54:52 - patchstitcher - INFO - For saving space. Would you like to save base model several times? :>
|
1024 |
+
2024/03/15 03:54:52 - patchstitcher - INFO - save checkpoint_24.pth at ./work_dir/depthanything_vits_u4k/coarse_pretrain
|
depthanything_vits_u4k/coarse_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1eaf830589ea843ca421c175967b31c33609616f04af50b18b40d1abb3cb1e3
|
3 |
+
size 300162730
|
depthanything_vits_u4k/coarse_pretrain/config.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'coarse_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vits',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vits',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
sigloss=dict(type='SILogLoss'),
|
149 |
+
target='coarse',
|
150 |
+
type='BaselinePretrain')
|
151 |
+
optim_wrapper = dict(
|
152 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
153 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
154 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
155 |
+
param_scheduler = dict(
|
156 |
+
base_momentum=0.85,
|
157 |
+
cycle_momentum=True,
|
158 |
+
div_factor=1,
|
159 |
+
final_div_factor=10000,
|
160 |
+
max_momentum=0.95,
|
161 |
+
pct_start=0.5,
|
162 |
+
three_phase=False)
|
163 |
+
project = 'patchfusion'
|
164 |
+
resume = False
|
165 |
+
tags = [
|
166 |
+
'coarse',
|
167 |
+
'da',
|
168 |
+
'vits',
|
169 |
+
]
|
170 |
+
test_in_dataloader = dict(
|
171 |
+
batch_size=1,
|
172 |
+
dataset=dict(
|
173 |
+
data_root='./data/u4k',
|
174 |
+
max_depth=80,
|
175 |
+
min_depth=0.001,
|
176 |
+
mode='infer',
|
177 |
+
split='./data/u4k/splits/test.txt',
|
178 |
+
transform_cfg=dict(network_process_size=[
|
179 |
+
384,
|
180 |
+
512,
|
181 |
+
]),
|
182 |
+
type='UnrealStereo4kDataset'),
|
183 |
+
num_workers=2)
|
184 |
+
test_out_dataloader = dict(
|
185 |
+
batch_size=1,
|
186 |
+
dataset=dict(
|
187 |
+
data_root='./data/u4k',
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
mode='infer',
|
191 |
+
split='./data/u4k/splits/test_out.txt',
|
192 |
+
transform_cfg=dict(network_process_size=[
|
193 |
+
384,
|
194 |
+
512,
|
195 |
+
]),
|
196 |
+
type='UnrealStereo4kDataset'),
|
197 |
+
num_workers=2)
|
198 |
+
train_cfg = dict(
|
199 |
+
eval_start=0,
|
200 |
+
log_interval=100,
|
201 |
+
max_epochs=24,
|
202 |
+
save_checkpoint_interval=24,
|
203 |
+
train_log_img_interval=100,
|
204 |
+
val_interval=2,
|
205 |
+
val_log_img_interval=50,
|
206 |
+
val_type='epoch_base')
|
207 |
+
train_dataloader = dict(
|
208 |
+
batch_size=4,
|
209 |
+
dataset=dict(
|
210 |
+
data_root='./data/u4k',
|
211 |
+
max_depth=80,
|
212 |
+
min_depth=0.001,
|
213 |
+
mode='train',
|
214 |
+
resize_mode='depth-anything',
|
215 |
+
split='./data/u4k/splits/train.txt',
|
216 |
+
transform_cfg=dict(
|
217 |
+
degree=1.0,
|
218 |
+
network_process_size=[
|
219 |
+
392,
|
220 |
+
518,
|
221 |
+
],
|
222 |
+
random_crop=True,
|
223 |
+
random_crop_size=(
|
224 |
+
540,
|
225 |
+
960,
|
226 |
+
)),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=4)
|
229 |
+
val_dataloader = dict(
|
230 |
+
batch_size=1,
|
231 |
+
dataset=dict(
|
232 |
+
data_root='./data/u4k',
|
233 |
+
max_depth=80,
|
234 |
+
min_depth=0.001,
|
235 |
+
mode='infer',
|
236 |
+
resize_mode='depth-anything',
|
237 |
+
split='./data/u4k/splits/val.txt',
|
238 |
+
transform_cfg=dict(
|
239 |
+
degree=1.0,
|
240 |
+
network_process_size=[
|
241 |
+
392,
|
242 |
+
518,
|
243 |
+
],
|
244 |
+
random_crop_size=(
|
245 |
+
540,
|
246 |
+
960,
|
247 |
+
)),
|
248 |
+
type='UnrealStereo4kDataset'),
|
249 |
+
num_workers=2)
|
250 |
+
work_dir = './work_dir/depthanything_vits_u4k/coarse_pretrain'
|
251 |
+
zoe_depth_config = dict(
|
252 |
+
attractor_alpha=1000,
|
253 |
+
attractor_gamma=2,
|
254 |
+
attractor_kind='mean',
|
255 |
+
attractor_type='inv',
|
256 |
+
aug=True,
|
257 |
+
bin_centers_type='softplus',
|
258 |
+
bin_embedding_dim=128,
|
259 |
+
clip_grad=0.1,
|
260 |
+
dataset='nyu',
|
261 |
+
depth_anything=True,
|
262 |
+
distributed=True,
|
263 |
+
do_resize=False,
|
264 |
+
force_keep_ar=True,
|
265 |
+
freeze_midas_bn=True,
|
266 |
+
gpu='NULL',
|
267 |
+
img_size=[
|
268 |
+
392,
|
269 |
+
518,
|
270 |
+
],
|
271 |
+
inverse_midas=False,
|
272 |
+
log_images_every=0.1,
|
273 |
+
max_depth=80,
|
274 |
+
max_temp=50.0,
|
275 |
+
max_translation=100,
|
276 |
+
memory_efficient=True,
|
277 |
+
midas_model_type='vits',
|
278 |
+
min_depth=0.001,
|
279 |
+
min_temp=0.0212,
|
280 |
+
model='zoedepth',
|
281 |
+
n_attractors=[
|
282 |
+
16,
|
283 |
+
8,
|
284 |
+
4,
|
285 |
+
1,
|
286 |
+
],
|
287 |
+
n_bins=64,
|
288 |
+
name='ZoeDepth',
|
289 |
+
notes='',
|
290 |
+
output_distribution='logbinomial',
|
291 |
+
prefetch=False,
|
292 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
293 |
+
print_losses=False,
|
294 |
+
project='ZoeDepth',
|
295 |
+
random_crop=False,
|
296 |
+
random_translate=False,
|
297 |
+
root='.',
|
298 |
+
save_dir='',
|
299 |
+
shared_dict='NULL',
|
300 |
+
tags='',
|
301 |
+
train_midas=True,
|
302 |
+
translate_prob=0.2,
|
303 |
+
type='DA-ZoeDepth',
|
304 |
+
uid='NULL',
|
305 |
+
use_amp=False,
|
306 |
+
use_pretrained_midas=True,
|
307 |
+
use_shared_dict=False,
|
308 |
+
validate_every=0.25,
|
309 |
+
version_name='v1',
|
310 |
+
workers=16)
|
depthanything_vits_u4k/fine_pretrain/20240315_035516.log
ADDED
@@ -0,0 +1,1028 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024/03/15 03:55:26 - patchstitcher - INFO -
|
2 |
+
------------------------------------------------------------
|
3 |
+
System environment:
|
4 |
+
sys.platform: linux
|
5 |
+
Python: 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) [GCC 12.3.0]
|
6 |
+
CUDA available: True
|
7 |
+
numpy_random_seed: 621
|
8 |
+
GPU 0,1,2,3: NVIDIA A100-SXM4-80GB
|
9 |
+
CUDA_HOME: /sw/rl9g/cuda/11.8/rl9_binary
|
10 |
+
NVCC: Cuda compilation tools, release 11.8, V11.8.89
|
11 |
+
GCC: gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)
|
12 |
+
PyTorch: 2.1.2
|
13 |
+
PyTorch compiling details: PyTorch built with:
|
14 |
+
- GCC 9.3
|
15 |
+
- C++ Version: 201703
|
16 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
|
17 |
+
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
|
18 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
19 |
+
- LAPACK is enabled (usually provided by MKL)
|
20 |
+
- NNPACK is enabled
|
21 |
+
- CPU capability usage: AVX2
|
22 |
+
- CUDA Runtime 11.8
|
23 |
+
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
|
24 |
+
- CuDNN 8.7
|
25 |
+
- Magma 2.6.1
|
26 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
27 |
+
|
28 |
+
TorchVision: 0.16.2
|
29 |
+
OpenCV: 4.8.1
|
30 |
+
MMEngine: 0.10.2
|
31 |
+
|
32 |
+
Runtime environment:
|
33 |
+
cudnn_benchmark: True
|
34 |
+
mp_cfg: {'mp_start_method': 'forkserver'}
|
35 |
+
dist_cfg: {'backend': 'nccl'}
|
36 |
+
seed: 621
|
37 |
+
Distributed launcher: pytorch
|
38 |
+
Distributed training: True
|
39 |
+
GPU number: 4
|
40 |
+
------------------------------------------------------------
|
41 |
+
|
42 |
+
2024/03/15 03:55:26 - patchstitcher - INFO - Config:
|
43 |
+
collect_input_args = [
|
44 |
+
'image_lr',
|
45 |
+
'crops_image_hr',
|
46 |
+
'depth_gt',
|
47 |
+
'crop_depths',
|
48 |
+
'bboxs',
|
49 |
+
'image_hr',
|
50 |
+
]
|
51 |
+
convert_syncbn = True
|
52 |
+
debug = False
|
53 |
+
env_cfg = dict(
|
54 |
+
cudnn_benchmark=True,
|
55 |
+
dist_cfg=dict(backend='nccl'),
|
56 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
57 |
+
find_unused_parameters = True
|
58 |
+
general_dataloader = dict(
|
59 |
+
batch_size=1,
|
60 |
+
dataset=dict(
|
61 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
62 |
+
num_workers=2)
|
63 |
+
launcher = 'pytorch'
|
64 |
+
log_name = 'fine_pretrain'
|
65 |
+
max_depth = 80
|
66 |
+
min_depth = 0.001
|
67 |
+
model = dict(
|
68 |
+
coarse_branch=dict(
|
69 |
+
attractor_alpha=1000,
|
70 |
+
attractor_gamma=2,
|
71 |
+
attractor_kind='mean',
|
72 |
+
attractor_type='inv',
|
73 |
+
aug=True,
|
74 |
+
bin_centers_type='softplus',
|
75 |
+
bin_embedding_dim=128,
|
76 |
+
clip_grad=0.1,
|
77 |
+
dataset='nyu',
|
78 |
+
depth_anything=True,
|
79 |
+
distributed=True,
|
80 |
+
do_resize=False,
|
81 |
+
force_keep_ar=True,
|
82 |
+
freeze_midas_bn=True,
|
83 |
+
gpu='NULL',
|
84 |
+
img_size=[
|
85 |
+
392,
|
86 |
+
518,
|
87 |
+
],
|
88 |
+
inverse_midas=False,
|
89 |
+
log_images_every=0.1,
|
90 |
+
max_depth=80,
|
91 |
+
max_temp=50.0,
|
92 |
+
max_translation=100,
|
93 |
+
memory_efficient=True,
|
94 |
+
midas_model_type='vits',
|
95 |
+
min_depth=0.001,
|
96 |
+
min_temp=0.0212,
|
97 |
+
model='zoedepth',
|
98 |
+
n_attractors=[
|
99 |
+
16,
|
100 |
+
8,
|
101 |
+
4,
|
102 |
+
1,
|
103 |
+
],
|
104 |
+
n_bins=64,
|
105 |
+
name='ZoeDepth',
|
106 |
+
notes='',
|
107 |
+
output_distribution='logbinomial',
|
108 |
+
prefetch=False,
|
109 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
110 |
+
print_losses=False,
|
111 |
+
project='ZoeDepth',
|
112 |
+
random_crop=False,
|
113 |
+
random_translate=False,
|
114 |
+
root='.',
|
115 |
+
save_dir='',
|
116 |
+
shared_dict='NULL',
|
117 |
+
tags='',
|
118 |
+
train_midas=True,
|
119 |
+
translate_prob=0.2,
|
120 |
+
type='DA-ZoeDepth',
|
121 |
+
uid='NULL',
|
122 |
+
use_amp=False,
|
123 |
+
use_pretrained_midas=True,
|
124 |
+
use_shared_dict=False,
|
125 |
+
validate_every=0.25,
|
126 |
+
version_name='v1',
|
127 |
+
workers=16),
|
128 |
+
fine_branch=dict(
|
129 |
+
attractor_alpha=1000,
|
130 |
+
attractor_gamma=2,
|
131 |
+
attractor_kind='mean',
|
132 |
+
attractor_type='inv',
|
133 |
+
aug=True,
|
134 |
+
bin_centers_type='softplus',
|
135 |
+
bin_embedding_dim=128,
|
136 |
+
clip_grad=0.1,
|
137 |
+
dataset='nyu',
|
138 |
+
depth_anything=True,
|
139 |
+
distributed=True,
|
140 |
+
do_resize=False,
|
141 |
+
force_keep_ar=True,
|
142 |
+
freeze_midas_bn=True,
|
143 |
+
gpu='NULL',
|
144 |
+
img_size=[
|
145 |
+
392,
|
146 |
+
518,
|
147 |
+
],
|
148 |
+
inverse_midas=False,
|
149 |
+
log_images_every=0.1,
|
150 |
+
max_depth=80,
|
151 |
+
max_temp=50.0,
|
152 |
+
max_translation=100,
|
153 |
+
memory_efficient=True,
|
154 |
+
midas_model_type='vits',
|
155 |
+
min_depth=0.001,
|
156 |
+
min_temp=0.0212,
|
157 |
+
model='zoedepth',
|
158 |
+
n_attractors=[
|
159 |
+
16,
|
160 |
+
8,
|
161 |
+
4,
|
162 |
+
1,
|
163 |
+
],
|
164 |
+
n_bins=64,
|
165 |
+
name='ZoeDepth',
|
166 |
+
notes='',
|
167 |
+
output_distribution='logbinomial',
|
168 |
+
prefetch=False,
|
169 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
170 |
+
print_losses=False,
|
171 |
+
project='ZoeDepth',
|
172 |
+
random_crop=False,
|
173 |
+
random_translate=False,
|
174 |
+
root='.',
|
175 |
+
save_dir='',
|
176 |
+
shared_dict='NULL',
|
177 |
+
tags='',
|
178 |
+
train_midas=True,
|
179 |
+
translate_prob=0.2,
|
180 |
+
type='DA-ZoeDepth',
|
181 |
+
uid='NULL',
|
182 |
+
use_amp=False,
|
183 |
+
use_pretrained_midas=True,
|
184 |
+
use_shared_dict=False,
|
185 |
+
validate_every=0.25,
|
186 |
+
version_name='v1',
|
187 |
+
workers=16),
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
patch_process_shape=(
|
191 |
+
392,
|
192 |
+
518,
|
193 |
+
),
|
194 |
+
sigloss=dict(type='SILogLoss'),
|
195 |
+
target='fine',
|
196 |
+
type='BaselinePretrain')
|
197 |
+
optim_wrapper = dict(
|
198 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
199 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
200 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
201 |
+
param_scheduler = dict(
|
202 |
+
base_momentum=0.85,
|
203 |
+
cycle_momentum=True,
|
204 |
+
div_factor=1,
|
205 |
+
final_div_factor=10000,
|
206 |
+
max_momentum=0.95,
|
207 |
+
pct_start=0.5,
|
208 |
+
three_phase=False)
|
209 |
+
project = 'patchfusion'
|
210 |
+
tags = [
|
211 |
+
'fine',
|
212 |
+
'da',
|
213 |
+
'vits',
|
214 |
+
]
|
215 |
+
test_in_dataloader = dict(
|
216 |
+
batch_size=1,
|
217 |
+
dataset=dict(
|
218 |
+
data_root='./data/u4k',
|
219 |
+
max_depth=80,
|
220 |
+
min_depth=0.001,
|
221 |
+
mode='infer',
|
222 |
+
split='./data/u4k/splits/test.txt',
|
223 |
+
transform_cfg=dict(network_process_size=[
|
224 |
+
384,
|
225 |
+
512,
|
226 |
+
]),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=2)
|
229 |
+
test_out_dataloader = dict(
|
230 |
+
batch_size=1,
|
231 |
+
dataset=dict(
|
232 |
+
data_root='./data/u4k',
|
233 |
+
max_depth=80,
|
234 |
+
min_depth=0.001,
|
235 |
+
mode='infer',
|
236 |
+
split='./data/u4k/splits/test_out.txt',
|
237 |
+
transform_cfg=dict(network_process_size=[
|
238 |
+
384,
|
239 |
+
512,
|
240 |
+
]),
|
241 |
+
type='UnrealStereo4kDataset'),
|
242 |
+
num_workers=2)
|
243 |
+
train_cfg = dict(
|
244 |
+
eval_start=0,
|
245 |
+
log_interval=100,
|
246 |
+
max_epochs=24,
|
247 |
+
save_checkpoint_interval=24,
|
248 |
+
train_log_img_interval=100,
|
249 |
+
val_interval=2,
|
250 |
+
val_log_img_interval=50,
|
251 |
+
val_type='epoch_base')
|
252 |
+
train_dataloader = dict(
|
253 |
+
batch_size=4,
|
254 |
+
dataset=dict(
|
255 |
+
data_root='./data/u4k',
|
256 |
+
max_depth=80,
|
257 |
+
min_depth=0.001,
|
258 |
+
mode='train',
|
259 |
+
resize_mode='depth-anything',
|
260 |
+
split='./data/u4k/splits/train.txt',
|
261 |
+
transform_cfg=dict(
|
262 |
+
degree=1.0, network_process_size=[
|
263 |
+
392,
|
264 |
+
518,
|
265 |
+
], random_crop=True),
|
266 |
+
type='UnrealStereo4kDataset'),
|
267 |
+
num_workers=4)
|
268 |
+
val_dataloader = dict(
|
269 |
+
batch_size=1,
|
270 |
+
dataset=dict(
|
271 |
+
data_root='./data/u4k',
|
272 |
+
max_depth=80,
|
273 |
+
min_depth=0.001,
|
274 |
+
mode='infer',
|
275 |
+
resize_mode='depth-anything',
|
276 |
+
split='./data/u4k/splits/val.txt',
|
277 |
+
transform_cfg=dict(degree=1.0, network_process_size=[
|
278 |
+
392,
|
279 |
+
518,
|
280 |
+
]),
|
281 |
+
type='UnrealStereo4kDataset'),
|
282 |
+
num_workers=2)
|
283 |
+
work_dir = './work_dir/depthanything_vits_u4k/fine_pretrain'
|
284 |
+
zoe_depth_config = dict(
|
285 |
+
attractor_alpha=1000,
|
286 |
+
attractor_gamma=2,
|
287 |
+
attractor_kind='mean',
|
288 |
+
attractor_type='inv',
|
289 |
+
aug=True,
|
290 |
+
bin_centers_type='softplus',
|
291 |
+
bin_embedding_dim=128,
|
292 |
+
clip_grad=0.1,
|
293 |
+
dataset='nyu',
|
294 |
+
depth_anything=True,
|
295 |
+
distributed=True,
|
296 |
+
do_resize=False,
|
297 |
+
force_keep_ar=True,
|
298 |
+
freeze_midas_bn=True,
|
299 |
+
gpu='NULL',
|
300 |
+
img_size=[
|
301 |
+
392,
|
302 |
+
518,
|
303 |
+
],
|
304 |
+
inverse_midas=False,
|
305 |
+
log_images_every=0.1,
|
306 |
+
max_depth=80,
|
307 |
+
max_temp=50.0,
|
308 |
+
max_translation=100,
|
309 |
+
memory_efficient=True,
|
310 |
+
midas_model_type='vits',
|
311 |
+
min_depth=0.001,
|
312 |
+
min_temp=0.0212,
|
313 |
+
model='zoedepth',
|
314 |
+
n_attractors=[
|
315 |
+
16,
|
316 |
+
8,
|
317 |
+
4,
|
318 |
+
1,
|
319 |
+
],
|
320 |
+
n_bins=64,
|
321 |
+
name='ZoeDepth',
|
322 |
+
notes='',
|
323 |
+
output_distribution='logbinomial',
|
324 |
+
prefetch=False,
|
325 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
326 |
+
print_losses=False,
|
327 |
+
project='ZoeDepth',
|
328 |
+
random_crop=False,
|
329 |
+
random_translate=False,
|
330 |
+
root='.',
|
331 |
+
save_dir='',
|
332 |
+
shared_dict='NULL',
|
333 |
+
tags='',
|
334 |
+
train_midas=True,
|
335 |
+
translate_prob=0.2,
|
336 |
+
type='DA-ZoeDepth',
|
337 |
+
uid='NULL',
|
338 |
+
use_amp=False,
|
339 |
+
use_pretrained_midas=True,
|
340 |
+
use_shared_dict=False,
|
341 |
+
validate_every=0.25,
|
342 |
+
version_name='v1',
|
343 |
+
workers=16)
|
344 |
+
|
345 |
+
2024/03/15 03:55:27 - patchstitcher - INFO - Loading deepnet from local::./work_dir/DepthAnything_vits.pt
|
346 |
+
2024/03/15 03:55:27 - patchstitcher - INFO - Current zoedepth.core.prep.resizer is <class 'torch.nn.modules.linear.Identity'>
|
347 |
+
2024/03/15 03:55:27 - patchstitcher - INFO - DistributedDataParallel(
|
348 |
+
(module): BaselinePretrain(
|
349 |
+
(fine_branch): ZoeDepth(
|
350 |
+
(core): DepthAnythingCore(
|
351 |
+
(core): DPT_DINOv2(
|
352 |
+
(pretrained): DinoVisionTransformer(
|
353 |
+
(patch_embed): PatchEmbed(
|
354 |
+
(proj): Conv2d(3, 384, kernel_size=(14, 14), stride=(14, 14))
|
355 |
+
(norm): Identity()
|
356 |
+
)
|
357 |
+
(blocks): ModuleList(
|
358 |
+
(0-11): 12 x NestedTensorBlock(
|
359 |
+
(norm1): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
|
360 |
+
(attn): MemEffAttention(
|
361 |
+
(qkv): Linear(in_features=384, out_features=1152, bias=True)
|
362 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
363 |
+
(proj): Linear(in_features=384, out_features=384, bias=True)
|
364 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
365 |
+
)
|
366 |
+
(ls1): LayerScale()
|
367 |
+
(drop_path1): Identity()
|
368 |
+
(norm2): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
|
369 |
+
(mlp): Mlp(
|
370 |
+
(fc1): Linear(in_features=384, out_features=1536, bias=True)
|
371 |
+
(act): GELU(approximate='none')
|
372 |
+
(fc2): Linear(in_features=1536, out_features=384, bias=True)
|
373 |
+
(drop): Dropout(p=0.0, inplace=False)
|
374 |
+
)
|
375 |
+
(ls2): LayerScale()
|
376 |
+
(drop_path2): Identity()
|
377 |
+
)
|
378 |
+
)
|
379 |
+
(norm): LayerNorm((384,), eps=1e-06, elementwise_affine=True)
|
380 |
+
(head): Identity()
|
381 |
+
)
|
382 |
+
(depth_head): DPTHead(
|
383 |
+
(projects): ModuleList(
|
384 |
+
(0): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1))
|
385 |
+
(1): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1))
|
386 |
+
(2): Conv2d(384, 192, kernel_size=(1, 1), stride=(1, 1))
|
387 |
+
(3): Conv2d(384, 384, kernel_size=(1, 1), stride=(1, 1))
|
388 |
+
)
|
389 |
+
(resize_layers): ModuleList(
|
390 |
+
(0): ConvTranspose2d(48, 48, kernel_size=(4, 4), stride=(4, 4))
|
391 |
+
(1): ConvTranspose2d(96, 96, kernel_size=(2, 2), stride=(2, 2))
|
392 |
+
(2): Identity()
|
393 |
+
(3): Conv2d(384, 384, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
394 |
+
)
|
395 |
+
(scratch): Module(
|
396 |
+
(layer1_rn): Conv2d(48, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
397 |
+
(layer2_rn): Conv2d(96, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
398 |
+
(layer3_rn): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
399 |
+
(layer4_rn): Conv2d(384, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
|
400 |
+
(refinenet1): FeatureFusionBlock(
|
401 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
402 |
+
(resConfUnit1): ResidualConvUnit(
|
403 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
404 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
405 |
+
(activation): ReLU()
|
406 |
+
(skip_add): FloatFunctional(
|
407 |
+
(activation_post_process): Identity()
|
408 |
+
)
|
409 |
+
)
|
410 |
+
(resConfUnit2): ResidualConvUnit(
|
411 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
412 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
413 |
+
(activation): ReLU()
|
414 |
+
(skip_add): FloatFunctional(
|
415 |
+
(activation_post_process): Identity()
|
416 |
+
)
|
417 |
+
)
|
418 |
+
(skip_add): FloatFunctional(
|
419 |
+
(activation_post_process): Identity()
|
420 |
+
)
|
421 |
+
)
|
422 |
+
(refinenet2): FeatureFusionBlock(
|
423 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
424 |
+
(resConfUnit1): ResidualConvUnit(
|
425 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
426 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
427 |
+
(activation): ReLU()
|
428 |
+
(skip_add): FloatFunctional(
|
429 |
+
(activation_post_process): Identity()
|
430 |
+
)
|
431 |
+
)
|
432 |
+
(resConfUnit2): ResidualConvUnit(
|
433 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
434 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
435 |
+
(activation): ReLU()
|
436 |
+
(skip_add): FloatFunctional(
|
437 |
+
(activation_post_process): Identity()
|
438 |
+
)
|
439 |
+
)
|
440 |
+
(skip_add): FloatFunctional(
|
441 |
+
(activation_post_process): Identity()
|
442 |
+
)
|
443 |
+
)
|
444 |
+
(refinenet3): FeatureFusionBlock(
|
445 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
446 |
+
(resConfUnit1): ResidualConvUnit(
|
447 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
448 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
449 |
+
(activation): ReLU()
|
450 |
+
(skip_add): FloatFunctional(
|
451 |
+
(activation_post_process): Identity()
|
452 |
+
)
|
453 |
+
)
|
454 |
+
(resConfUnit2): ResidualConvUnit(
|
455 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
456 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
457 |
+
(activation): ReLU()
|
458 |
+
(skip_add): FloatFunctional(
|
459 |
+
(activation_post_process): Identity()
|
460 |
+
)
|
461 |
+
)
|
462 |
+
(skip_add): FloatFunctional(
|
463 |
+
(activation_post_process): Identity()
|
464 |
+
)
|
465 |
+
)
|
466 |
+
(refinenet4): FeatureFusionBlock(
|
467 |
+
(out_conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
468 |
+
(resConfUnit1): ResidualConvUnit(
|
469 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
470 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
471 |
+
(activation): ReLU()
|
472 |
+
(skip_add): FloatFunctional(
|
473 |
+
(activation_post_process): Identity()
|
474 |
+
)
|
475 |
+
)
|
476 |
+
(resConfUnit2): ResidualConvUnit(
|
477 |
+
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
478 |
+
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
479 |
+
(activation): ReLU()
|
480 |
+
(skip_add): FloatFunctional(
|
481 |
+
(activation_post_process): Identity()
|
482 |
+
)
|
483 |
+
)
|
484 |
+
(skip_add): FloatFunctional(
|
485 |
+
(activation_post_process): Identity()
|
486 |
+
)
|
487 |
+
)
|
488 |
+
(output_conv1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
489 |
+
(output_conv2): Sequential(
|
490 |
+
(0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
491 |
+
(1): ReLU(inplace=True)
|
492 |
+
(2): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
|
493 |
+
(3): ReLU(inplace=True)
|
494 |
+
(4): Identity()
|
495 |
+
)
|
496 |
+
)
|
497 |
+
)
|
498 |
+
)
|
499 |
+
)
|
500 |
+
(conv2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
|
501 |
+
(seed_bin_regressor): SeedBinRegressorUnnormed(
|
502 |
+
(_net): Sequential(
|
503 |
+
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
|
504 |
+
(1): ReLU(inplace=True)
|
505 |
+
(2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
|
506 |
+
(3): Softplus(beta=1, threshold=20)
|
507 |
+
)
|
508 |
+
)
|
509 |
+
(seed_projector): Projector(
|
510 |
+
(_net): Sequential(
|
511 |
+
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
|
512 |
+
(1): ReLU(inplace=True)
|
513 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
514 |
+
)
|
515 |
+
)
|
516 |
+
(projectors): ModuleList(
|
517 |
+
(0-3): 4 x Projector(
|
518 |
+
(_net): Sequential(
|
519 |
+
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1))
|
520 |
+
(1): ReLU(inplace=True)
|
521 |
+
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
522 |
+
)
|
523 |
+
)
|
524 |
+
)
|
525 |
+
(attractors): ModuleList(
|
526 |
+
(0): AttractorLayerUnnormed(
|
527 |
+
(_net): Sequential(
|
528 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
529 |
+
(1): ReLU(inplace=True)
|
530 |
+
(2): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
|
531 |
+
(3): Softplus(beta=1, threshold=20)
|
532 |
+
)
|
533 |
+
)
|
534 |
+
(1): AttractorLayerUnnormed(
|
535 |
+
(_net): Sequential(
|
536 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
537 |
+
(1): ReLU(inplace=True)
|
538 |
+
(2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
|
539 |
+
(3): Softplus(beta=1, threshold=20)
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(2): AttractorLayerUnnormed(
|
543 |
+
(_net): Sequential(
|
544 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
545 |
+
(1): ReLU(inplace=True)
|
546 |
+
(2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
|
547 |
+
(3): Softplus(beta=1, threshold=20)
|
548 |
+
)
|
549 |
+
)
|
550 |
+
(3): AttractorLayerUnnormed(
|
551 |
+
(_net): Sequential(
|
552 |
+
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
|
553 |
+
(1): ReLU(inplace=True)
|
554 |
+
(2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
|
555 |
+
(3): Softplus(beta=1, threshold=20)
|
556 |
+
)
|
557 |
+
)
|
558 |
+
)
|
559 |
+
(conditional_log_binomial): ConditionalLogBinomial(
|
560 |
+
(log_binomial_transform): LogBinomial()
|
561 |
+
(mlp): Sequential(
|
562 |
+
(0): Conv2d(161, 80, kernel_size=(1, 1), stride=(1, 1))
|
563 |
+
(1): GELU(approximate='none')
|
564 |
+
(2): Conv2d(80, 4, kernel_size=(1, 1), stride=(1, 1))
|
565 |
+
(3): Softplus(beta=1, threshold=20)
|
566 |
+
)
|
567 |
+
)
|
568 |
+
)
|
569 |
+
(sigloss): SILogLoss()
|
570 |
+
)
|
571 |
+
)
|
572 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - successfully init trainer
|
573 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.cls_token
|
574 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.pos_embed
|
575 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.mask_token
|
576 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.weight
|
577 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.bias
|
578 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.weight
|
579 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.bias
|
580 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.weight
|
581 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.bias
|
582 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.weight
|
583 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.bias
|
584 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls1.gamma
|
585 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.weight
|
586 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.bias
|
587 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.weight
|
588 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.bias
|
589 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.weight
|
590 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.bias
|
591 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls2.gamma
|
592 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.weight
|
593 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.bias
|
594 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.weight
|
595 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.bias
|
596 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.weight
|
597 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.bias
|
598 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls1.gamma
|
599 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.weight
|
600 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.bias
|
601 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.weight
|
602 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.bias
|
603 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.weight
|
604 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.bias
|
605 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls2.gamma
|
606 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.weight
|
607 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.bias
|
608 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.weight
|
609 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.bias
|
610 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.weight
|
611 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.bias
|
612 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls1.gamma
|
613 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.weight
|
614 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.bias
|
615 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.weight
|
616 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.bias
|
617 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.weight
|
618 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.bias
|
619 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls2.gamma
|
620 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.weight
|
621 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.bias
|
622 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.weight
|
623 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.bias
|
624 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.weight
|
625 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.bias
|
626 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls1.gamma
|
627 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.weight
|
628 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.bias
|
629 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.weight
|
630 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.bias
|
631 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.weight
|
632 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.bias
|
633 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls2.gamma
|
634 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.weight
|
635 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.bias
|
636 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.weight
|
637 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.bias
|
638 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.weight
|
639 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.bias
|
640 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls1.gamma
|
641 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.weight
|
642 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.bias
|
643 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.weight
|
644 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.bias
|
645 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.weight
|
646 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.bias
|
647 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls2.gamma
|
648 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.weight
|
649 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.bias
|
650 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.weight
|
651 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.bias
|
652 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.weight
|
653 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.bias
|
654 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls1.gamma
|
655 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.weight
|
656 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.bias
|
657 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.weight
|
658 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.bias
|
659 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.weight
|
660 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.bias
|
661 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls2.gamma
|
662 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.weight
|
663 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.bias
|
664 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.weight
|
665 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.bias
|
666 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.weight
|
667 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.bias
|
668 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls1.gamma
|
669 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.weight
|
670 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.bias
|
671 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.weight
|
672 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.bias
|
673 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.weight
|
674 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.bias
|
675 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls2.gamma
|
676 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.weight
|
677 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.bias
|
678 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.weight
|
679 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.bias
|
680 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.weight
|
681 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.bias
|
682 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls1.gamma
|
683 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.weight
|
684 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.bias
|
685 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.weight
|
686 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.bias
|
687 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.weight
|
688 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.bias
|
689 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls2.gamma
|
690 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.weight
|
691 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.bias
|
692 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.weight
|
693 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.bias
|
694 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.weight
|
695 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.bias
|
696 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls1.gamma
|
697 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.weight
|
698 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.bias
|
699 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.weight
|
700 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.bias
|
701 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.weight
|
702 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.bias
|
703 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls2.gamma
|
704 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.weight
|
705 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.bias
|
706 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.weight
|
707 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.bias
|
708 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.weight
|
709 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.bias
|
710 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls1.gamma
|
711 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.weight
|
712 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.bias
|
713 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.weight
|
714 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.bias
|
715 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.weight
|
716 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.bias
|
717 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls2.gamma
|
718 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.weight
|
719 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.bias
|
720 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.weight
|
721 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.bias
|
722 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.weight
|
723 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.bias
|
724 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls1.gamma
|
725 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.weight
|
726 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.bias
|
727 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.weight
|
728 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.bias
|
729 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.weight
|
730 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.bias
|
731 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls2.gamma
|
732 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.weight
|
733 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.bias
|
734 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.weight
|
735 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.bias
|
736 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.weight
|
737 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.bias
|
738 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls1.gamma
|
739 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.weight
|
740 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.bias
|
741 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.weight
|
742 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.bias
|
743 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.weight
|
744 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.bias
|
745 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls2.gamma
|
746 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.weight
|
747 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.bias
|
748 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.weight
|
749 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.bias
|
750 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.weight
|
751 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.bias
|
752 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.weight
|
753 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.bias
|
754 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.weight
|
755 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.bias
|
756 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.weight
|
757 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.bias
|
758 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.weight
|
759 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.bias
|
760 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.weight
|
761 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.bias
|
762 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer1_rn.weight
|
763 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer2_rn.weight
|
764 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer3_rn.weight
|
765 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer4_rn.weight
|
766 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.weight
|
767 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.bias
|
768 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.weight
|
769 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.bias
|
770 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.weight
|
771 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.bias
|
772 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.weight
|
773 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.bias
|
774 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.weight
|
775 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.bias
|
776 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.weight
|
777 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.bias
|
778 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.weight
|
779 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.bias
|
780 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.weight
|
781 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.bias
|
782 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.weight
|
783 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.bias
|
784 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.weight
|
785 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.bias
|
786 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.weight
|
787 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.bias
|
788 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.weight
|
789 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.bias
|
790 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.weight
|
791 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.bias
|
792 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.weight
|
793 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.bias
|
794 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.weight
|
795 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.bias
|
796 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.weight
|
797 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.bias
|
798 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.weight
|
799 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.bias
|
800 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.weight
|
801 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.bias
|
802 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.weight
|
803 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.bias
|
804 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.weight
|
805 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.bias
|
806 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.weight
|
807 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.bias
|
808 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.weight
|
809 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.bias
|
810 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.weight
|
811 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.bias
|
812 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.conv2.weight
|
813 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.conv2.bias
|
814 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.weight
|
815 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.bias
|
816 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.weight
|
817 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.bias
|
818 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.weight
|
819 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.bias
|
820 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.weight
|
821 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.bias
|
822 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.weight
|
823 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.bias
|
824 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.weight
|
825 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.bias
|
826 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.weight
|
827 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.bias
|
828 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.weight
|
829 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.bias
|
830 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.weight
|
831 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.bias
|
832 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.weight
|
833 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.bias
|
834 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.weight
|
835 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.bias
|
836 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.weight
|
837 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.bias
|
838 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.weight
|
839 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.bias
|
840 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.weight
|
841 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.bias
|
842 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.weight
|
843 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.bias
|
844 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.weight
|
845 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.bias
|
846 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.weight
|
847 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.bias
|
848 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.weight
|
849 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.bias
|
850 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.weight
|
851 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.bias
|
852 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.weight
|
853 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.bias
|
854 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.weight
|
855 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.bias
|
856 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.weight
|
857 |
+
2024/03/15 03:55:33 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.bias
|
858 |
+
2024/03/15 03:57:49 - patchstitcher - INFO - Epoch: [01/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.039879322052002 - fine_loss: 2.039879322052002
|
859 |
+
2024/03/15 03:59:40 - patchstitcher - INFO - Epoch: [01/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 3.776620626449585 - fine_loss: 3.776620626449585
|
860 |
+
2024/03/15 04:01:30 - patchstitcher - INFO - Epoch: [01/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.1612205505371094 - fine_loss: 2.1612205505371094
|
861 |
+
2024/03/15 04:03:20 - patchstitcher - INFO - Epoch: [01/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.3563077449798584 - fine_loss: 1.3563077449798584
|
862 |
+
2024/03/15 04:06:31 - patchstitcher - INFO - Epoch: [02/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.1678900718688965 - fine_loss: 2.1678900718688965
|
863 |
+
2024/03/15 04:08:25 - patchstitcher - INFO - Epoch: [02/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.8825774192810059 - fine_loss: 1.8825774192810059
|
864 |
+
2024/03/15 04:10:14 - patchstitcher - INFO - Epoch: [02/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.350590467453003 - fine_loss: 2.350590467453003
|
865 |
+
2024/03/15 04:12:06 - patchstitcher - INFO - Epoch: [02/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 2.691840648651123 - fine_loss: 2.691840648651123
|
866 |
+
2024/03/15 04:13:51 - patchstitcher - INFO - Evaluation Summary:
|
867 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
868 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
869 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
870 |
+
| 0.707044 | 0.9293698 | 0.9801447 | 0.1927294 | 2.3443637 | 0.0782506 | 0.2331481 | 20.0879481 | 0.4492522 | 1.7012854 |
|
871 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
872 |
+
2024/03/15 04:15:48 - patchstitcher - INFO - Epoch: [03/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2447803020477295 - fine_loss: 1.2447803020477295
|
873 |
+
2024/03/15 04:17:37 - patchstitcher - INFO - Epoch: [03/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.6822900772094727 - fine_loss: 1.6822900772094727
|
874 |
+
2024/03/15 04:19:22 - patchstitcher - INFO - Epoch: [03/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.7436625957489014 - fine_loss: 2.7436625957489014
|
875 |
+
2024/03/15 04:21:15 - patchstitcher - INFO - Epoch: [03/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.9489283561706543 - fine_loss: 1.9489283561706543
|
876 |
+
2024/03/15 04:24:21 - patchstitcher - INFO - Epoch: [04/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5366265773773193 - fine_loss: 1.5366265773773193
|
877 |
+
2024/03/15 04:26:10 - patchstitcher - INFO - Epoch: [04/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.0812580585479736 - fine_loss: 2.0812580585479736
|
878 |
+
2024/03/15 04:28:00 - patchstitcher - INFO - Epoch: [04/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.318430185317993 - fine_loss: 2.318430185317993
|
879 |
+
2024/03/15 04:29:48 - patchstitcher - INFO - Epoch: [04/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.638041615486145 - fine_loss: 1.638041615486145
|
880 |
+
2024/03/15 04:31:27 - patchstitcher - INFO - Evaluation Summary:
|
881 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+----------+
|
882 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
883 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+----------+
|
884 |
+
| 0.7926732 | 0.9574633 | 0.9874803 | 0.1658911 | 2.033809 | 0.0653377 | 0.1971613 | 17.6386279 | 0.3764188 | 1.566062 |
|
885 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+----------+
|
886 |
+
2024/03/15 04:33:22 - patchstitcher - INFO - Epoch: [05/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.071550726890564 - fine_loss: 1.071550726890564
|
887 |
+
2024/03/15 04:35:11 - patchstitcher - INFO - Epoch: [05/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.159848928451538 - fine_loss: 1.159848928451538
|
888 |
+
2024/03/15 04:36:58 - patchstitcher - INFO - Epoch: [05/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.2986273765563965 - fine_loss: 1.2986273765563965
|
889 |
+
2024/03/15 04:38:48 - patchstitcher - INFO - Epoch: [05/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.5721113681793213 - fine_loss: 1.5721113681793213
|
890 |
+
2024/03/15 04:42:00 - patchstitcher - INFO - Epoch: [06/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.7645320892333984 - fine_loss: 1.7645320892333984
|
891 |
+
2024/03/15 04:43:48 - patchstitcher - INFO - Epoch: [06/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.2818663120269775 - fine_loss: 1.2818663120269775
|
892 |
+
2024/03/15 04:45:40 - patchstitcher - INFO - Epoch: [06/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.2445242404937744 - fine_loss: 1.2445242404937744
|
893 |
+
2024/03/15 04:47:30 - patchstitcher - INFO - Epoch: [06/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.5368983745574951 - fine_loss: 1.5368983745574951
|
894 |
+
2024/03/15 04:49:02 - patchstitcher - INFO - Evaluation Summary:
|
895 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
896 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
897 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
898 |
+
| 0.8194143 | 0.9697637 | 0.9905658 | 0.1490125 | 1.8480574 | 0.0592408 | 0.1810736 | 15.8342003 | 0.3005681 | 1.3977808 |
|
899 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
900 |
+
2024/03/15 04:50:58 - patchstitcher - INFO - Epoch: [07/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4791369438171387 - fine_loss: 1.4791369438171387
|
901 |
+
2024/03/15 04:52:44 - patchstitcher - INFO - Epoch: [07/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.1252331733703613 - fine_loss: 2.1252331733703613
|
902 |
+
2024/03/15 04:54:32 - patchstitcher - INFO - Epoch: [07/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.84209406375885 - fine_loss: 1.84209406375885
|
903 |
+
2024/03/15 04:56:25 - patchstitcher - INFO - Epoch: [07/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.1359673738479614 - fine_loss: 1.1359673738479614
|
904 |
+
2024/03/15 04:59:38 - patchstitcher - INFO - Epoch: [08/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5866280794143677 - fine_loss: 1.5866280794143677
|
905 |
+
2024/03/15 05:01:29 - patchstitcher - INFO - Epoch: [08/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.3199617862701416 - fine_loss: 1.3199617862701416
|
906 |
+
2024/03/15 05:03:15 - patchstitcher - INFO - Epoch: [08/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6660882234573364 - fine_loss: 1.6660882234573364
|
907 |
+
2024/03/15 05:05:05 - patchstitcher - INFO - Epoch: [08/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0399880409240723 - fine_loss: 1.0399880409240723
|
908 |
+
2024/03/15 05:06:40 - patchstitcher - INFO - Evaluation Summary:
|
909 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
910 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
911 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
912 |
+
| 0.8804187 | 0.9831836 | 0.9948749 | 0.1118127 | 1.7537212 | 0.0498078 | 0.1550232 | 14.4210851 | 0.2352216 | 1.2980962 |
|
913 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
914 |
+
2024/03/15 05:08:36 - patchstitcher - INFO - Epoch: [09/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.7554281949996948 - fine_loss: 1.7554281949996948
|
915 |
+
2024/03/15 05:10:27 - patchstitcher - INFO - Epoch: [09/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.8572347164154053 - fine_loss: 2.8572347164154053
|
916 |
+
2024/03/15 05:12:16 - patchstitcher - INFO - Epoch: [09/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3657317161560059 - fine_loss: 1.3657317161560059
|
917 |
+
2024/03/15 05:14:08 - patchstitcher - INFO - Epoch: [09/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.3460898399353027 - fine_loss: 1.3460898399353027
|
918 |
+
2024/03/15 05:17:20 - patchstitcher - INFO - Epoch: [10/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0736647844314575 - fine_loss: 1.0736647844314575
|
919 |
+
2024/03/15 05:19:11 - patchstitcher - INFO - Epoch: [10/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.179059624671936 - fine_loss: 1.179059624671936
|
920 |
+
2024/03/15 05:21:00 - patchstitcher - INFO - Epoch: [10/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0112545490264893 - fine_loss: 1.0112545490264893
|
921 |
+
2024/03/15 05:22:47 - patchstitcher - INFO - Epoch: [10/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2453086376190186 - fine_loss: 1.2453086376190186
|
922 |
+
2024/03/15 05:24:25 - patchstitcher - INFO - Evaluation Summary:
|
923 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
924 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
925 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
926 |
+
| 0.8772274 | 0.9823961 | 0.9948375 | 0.1173125 | 1.7241426 | 0.0501591 | 0.1553792 | 14.1530364 | 0.2422748 | 1.3415729 |
|
927 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
928 |
+
2024/03/15 05:26:18 - patchstitcher - INFO - Epoch: [11/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.306344747543335 - fine_loss: 1.306344747543335
|
929 |
+
2024/03/15 05:28:16 - patchstitcher - INFO - Epoch: [11/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.348771572113037 - fine_loss: 1.348771572113037
|
930 |
+
2024/03/15 05:30:06 - patchstitcher - INFO - Epoch: [11/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.549656629562378 - fine_loss: 1.549656629562378
|
931 |
+
2024/03/15 05:31:57 - patchstitcher - INFO - Epoch: [11/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4452790021896362 - fine_loss: 1.4452790021896362
|
932 |
+
2024/03/15 05:35:10 - patchstitcher - INFO - Epoch: [12/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1077752113342285 - fine_loss: 1.1077752113342285
|
933 |
+
2024/03/15 05:37:01 - patchstitcher - INFO - Epoch: [12/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8956596255302429 - fine_loss: 0.8956596255302429
|
934 |
+
2024/03/15 05:38:52 - patchstitcher - INFO - Epoch: [12/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9720367789268494 - fine_loss: 0.9720367789268494
|
935 |
+
2024/03/15 05:40:41 - patchstitcher - INFO - Epoch: [12/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4826208353042603 - fine_loss: 1.4826208353042603
|
936 |
+
2024/03/15 05:42:16 - patchstitcher - INFO - Evaluation Summary:
|
937 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+----------+-----------+
|
938 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
939 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+----------+-----------+
|
940 |
+
| 0.8740682 | 0.9844725 | 0.9957269 | 0.1142447 | 1.696142 | 0.0509766 | 0.1547242 | 13.9800131 | 0.237403 | 1.2716073 |
|
941 |
+
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+----------+-----------+
|
942 |
+
2024/03/15 05:44:13 - patchstitcher - INFO - Epoch: [13/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.7906665802001953 - fine_loss: 1.7906665802001953
|
943 |
+
2024/03/15 05:46:06 - patchstitcher - INFO - Epoch: [13/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.7277212142944336 - fine_loss: 1.7277212142944336
|
944 |
+
2024/03/15 05:48:00 - patchstitcher - INFO - Epoch: [13/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.1345900297164917 - fine_loss: 1.1345900297164917
|
945 |
+
2024/03/15 05:49:53 - patchstitcher - INFO - Epoch: [13/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.680286169052124 - fine_loss: 0.680286169052124
|
946 |
+
2024/03/15 05:53:05 - patchstitcher - INFO - Epoch: [14/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0135771036148071 - fine_loss: 1.0135771036148071
|
947 |
+
2024/03/15 05:54:56 - patchstitcher - INFO - Epoch: [14/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.1816802024841309 - fine_loss: 1.1816802024841309
|
948 |
+
2024/03/15 05:56:44 - patchstitcher - INFO - Epoch: [14/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3476241827011108 - fine_loss: 1.3476241827011108
|
949 |
+
2024/03/15 05:58:33 - patchstitcher - INFO - Epoch: [14/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6280028223991394 - fine_loss: 0.6280028223991394
|
950 |
+
2024/03/15 06:00:11 - patchstitcher - INFO - Evaluation Summary:
|
951 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
952 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
953 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
954 |
+
| 0.9147314 | 0.9859354 | 0.9949076 | 0.1007045 | 1.6106567 | 0.0434999 | 0.138901 | 13.0318626 | 0.2056279 | 1.2140529 |
|
955 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
956 |
+
2024/03/15 06:02:04 - patchstitcher - INFO - Epoch: [15/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8376606702804565 - fine_loss: 0.8376606702804565
|
957 |
+
2024/03/15 06:03:57 - patchstitcher - INFO - Epoch: [15/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.03225576877594 - fine_loss: 1.03225576877594
|
958 |
+
2024/03/15 06:05:44 - patchstitcher - INFO - Epoch: [15/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.9883253574371338 - fine_loss: 0.9883253574371338
|
959 |
+
2024/03/15 06:07:36 - patchstitcher - INFO - Epoch: [15/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.262385368347168 - fine_loss: 1.262385368347168
|
960 |
+
2024/03/15 06:10:46 - patchstitcher - INFO - Epoch: [16/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1695902347564697 - fine_loss: 1.1695902347564697
|
961 |
+
2024/03/15 06:12:36 - patchstitcher - INFO - Epoch: [16/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.1688151359558105 - fine_loss: 2.1688151359558105
|
962 |
+
2024/03/15 06:14:24 - patchstitcher - INFO - Epoch: [16/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3791565895080566 - fine_loss: 1.3791565895080566
|
963 |
+
2024/03/15 06:16:12 - patchstitcher - INFO - Epoch: [16/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2718651294708252 - fine_loss: 1.2718651294708252
|
964 |
+
2024/03/15 06:17:50 - patchstitcher - INFO - Evaluation Summary:
|
965 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
966 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
967 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
968 |
+
| 0.917846 | 0.9849823 | 0.9948954 | 0.0979613 | 1.5791011 | 0.0433261 | 0.1380226 | 12.8257169 | 0.1883265 | 1.1684257 |
|
969 |
+
+----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
970 |
+
2024/03/15 06:19:42 - patchstitcher - INFO - Epoch: [17/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.0557522773742676 - fine_loss: 1.0557522773742676
|
971 |
+
2024/03/15 06:21:33 - patchstitcher - INFO - Epoch: [17/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6954542398452759 - fine_loss: 0.6954542398452759
|
972 |
+
2024/03/15 06:23:20 - patchstitcher - INFO - Epoch: [17/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.203284740447998 - fine_loss: 1.203284740447998
|
973 |
+
2024/03/15 06:25:09 - patchstitcher - INFO - Epoch: [17/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2890739440917969 - fine_loss: 1.2890739440917969
|
974 |
+
2024/03/15 06:28:25 - patchstitcher - INFO - Epoch: [18/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8028295040130615 - fine_loss: 0.8028295040130615
|
975 |
+
2024/03/15 06:30:13 - patchstitcher - INFO - Epoch: [18/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.499220609664917 - fine_loss: 0.499220609664917
|
976 |
+
2024/03/15 06:32:01 - patchstitcher - INFO - Epoch: [18/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8515260219573975 - fine_loss: 0.8515260219573975
|
977 |
+
2024/03/15 06:33:51 - patchstitcher - INFO - Epoch: [18/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.953697919845581 - fine_loss: 0.953697919845581
|
978 |
+
2024/03/15 06:35:27 - patchstitcher - INFO - Evaluation Summary:
|
979 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
980 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
981 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
982 |
+
| 0.9318894 | 0.9858092 | 0.9957183 | 0.0923063 | 1.5112557 | 0.0394818 | 0.1269675 | 11.6301649 | 0.1761516 | 1.1147971 |
|
983 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
984 |
+
2024/03/15 06:37:24 - patchstitcher - INFO - Epoch: [19/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8879871368408203 - fine_loss: 0.8879871368408203
|
985 |
+
2024/03/15 06:39:14 - patchstitcher - INFO - Epoch: [19/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4138840436935425 - fine_loss: 1.4138840436935425
|
986 |
+
2024/03/15 06:41:05 - patchstitcher - INFO - Epoch: [19/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3911192417144775 - fine_loss: 1.3911192417144775
|
987 |
+
2024/03/15 06:42:59 - patchstitcher - INFO - Epoch: [19/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9037826061248779 - fine_loss: 0.9037826061248779
|
988 |
+
2024/03/15 06:46:06 - patchstitcher - INFO - Epoch: [20/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7059022784233093 - fine_loss: 0.7059022784233093
|
989 |
+
2024/03/15 06:47:58 - patchstitcher - INFO - Epoch: [20/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8616353273391724 - fine_loss: 0.8616353273391724
|
990 |
+
2024/03/15 06:49:51 - patchstitcher - INFO - Epoch: [20/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8395438194274902 - fine_loss: 0.8395438194274902
|
991 |
+
2024/03/15 06:51:43 - patchstitcher - INFO - Epoch: [20/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6362200379371643 - fine_loss: 0.6362200379371643
|
992 |
+
2024/03/15 06:53:21 - patchstitcher - INFO - Evaluation Summary:
|
993 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
994 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
995 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
996 |
+
| 0.9486918 | 0.9883879 | 0.9965515 | 0.0802352 | 1.4414517 | 0.0349744 | 0.116316 | 10.9957016 | 0.1575956 | 1.0969994 |
|
997 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|
998 |
+
2024/03/15 06:55:18 - patchstitcher - INFO - Epoch: [21/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6189630627632141 - fine_loss: 0.6189630627632141
|
999 |
+
2024/03/15 06:57:11 - patchstitcher - INFO - Epoch: [21/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.1719452142715454 - fine_loss: 1.1719452142715454
|
1000 |
+
2024/03/15 06:58:55 - patchstitcher - INFO - Epoch: [21/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.142961025238037 - fine_loss: 1.142961025238037
|
1001 |
+
2024/03/15 07:00:45 - patchstitcher - INFO - Epoch: [21/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.719948649406433 - fine_loss: 1.719948649406433
|
1002 |
+
2024/03/15 07:03:58 - patchstitcher - INFO - Epoch: [22/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6470488905906677 - fine_loss: 0.6470488905906677
|
1003 |
+
2024/03/15 07:05:49 - patchstitcher - INFO - Epoch: [22/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5520279407501221 - fine_loss: 0.5520279407501221
|
1004 |
+
2024/03/15 07:07:38 - patchstitcher - INFO - Epoch: [22/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8810967803001404 - fine_loss: 0.8810967803001404
|
1005 |
+
2024/03/15 07:09:32 - patchstitcher - INFO - Epoch: [22/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6827142238616943 - fine_loss: 0.6827142238616943
|
1006 |
+
2024/03/15 07:11:07 - patchstitcher - INFO - Evaluation Summary:
|
1007 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
1008 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1009 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
1010 |
+
| 0.9523656 | 0.9892937 | 0.9967417 | 0.0767006 | 1.4133022 | 0.0333895 | 0.1125023 | 10.666611 | 0.1523504 | 1.061902 |
|
1011 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|
1012 |
+
2024/03/15 07:13:02 - patchstitcher - INFO - Epoch: [23/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.8002086877822876 - fine_loss: 1.8002086877822876
|
1013 |
+
2024/03/15 07:14:51 - patchstitcher - INFO - Epoch: [23/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5043245553970337 - fine_loss: 0.5043245553970337
|
1014 |
+
2024/03/15 07:16:39 - patchstitcher - INFO - Epoch: [23/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6025413274765015 - fine_loss: 1.6025413274765015
|
1015 |
+
2024/03/15 07:18:29 - patchstitcher - INFO - Epoch: [23/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.3183393478393555 - fine_loss: 1.3183393478393555
|
1016 |
+
2024/03/15 07:21:41 - patchstitcher - INFO - Epoch: [24/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.6571695804595947 - fine_loss: 1.6571695804595947
|
1017 |
+
2024/03/15 07:23:30 - patchstitcher - INFO - Epoch: [24/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0306520462036133 - fine_loss: 1.0306520462036133
|
1018 |
+
2024/03/15 07:25:19 - patchstitcher - INFO - Epoch: [24/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8030037879943848 - fine_loss: 0.8030037879943848
|
1019 |
+
2024/03/15 07:27:09 - patchstitcher - INFO - Epoch: [24/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6139640808105469 - fine_loss: 0.6139640808105469
|
1020 |
+
2024/03/15 07:28:49 - patchstitcher - INFO - Evaluation Summary:
|
1021 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
1022 |
+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
|
1023 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
1024 |
+
| 0.9531358 | 0.9897053 | 0.9967571 | 0.0759499 | 1.4041272 | 0.0327699 | 0.1107659 | 10.5243982 | 0.1508702 | 1.0635976 |
|
1025 |
+
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|
1026 |
+
2024/03/15 07:28:49 - patchstitcher - INFO - Saving ckp, but use the inner get_save_dict fuction to get model_dict
|
1027 |
+
2024/03/15 07:28:49 - patchstitcher - INFO - For saving space. Would you like to save base model several times? :>
|
1028 |
+
2024/03/15 07:28:49 - patchstitcher - INFO - save checkpoint_24.pth at ./work_dir/depthanything_vits_u4k/fine_pretrain
|
depthanything_vits_u4k/fine_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83e1263ca84ae622c57b1cdfc1e1e2b548ad13d3e1d2b143193a6d5efcc5fc92
|
3 |
+
size 300162730
|
depthanything_vits_u4k/fine_pretrain/config.py
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'fine_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vits',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vits',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
patch_process_shape=(
|
149 |
+
392,
|
150 |
+
518,
|
151 |
+
),
|
152 |
+
sigloss=dict(type='SILogLoss'),
|
153 |
+
target='fine',
|
154 |
+
type='BaselinePretrain')
|
155 |
+
optim_wrapper = dict(
|
156 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
157 |
+
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
|
158 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
159 |
+
param_scheduler = dict(
|
160 |
+
base_momentum=0.85,
|
161 |
+
cycle_momentum=True,
|
162 |
+
div_factor=1,
|
163 |
+
final_div_factor=10000,
|
164 |
+
max_momentum=0.95,
|
165 |
+
pct_start=0.5,
|
166 |
+
three_phase=False)
|
167 |
+
project = 'patchfusion'
|
168 |
+
resume = False
|
169 |
+
tags = [
|
170 |
+
'fine',
|
171 |
+
'da',
|
172 |
+
'vits',
|
173 |
+
]
|
174 |
+
test_in_dataloader = dict(
|
175 |
+
batch_size=1,
|
176 |
+
dataset=dict(
|
177 |
+
data_root='./data/u4k',
|
178 |
+
max_depth=80,
|
179 |
+
min_depth=0.001,
|
180 |
+
mode='infer',
|
181 |
+
split='./data/u4k/splits/test.txt',
|
182 |
+
transform_cfg=dict(network_process_size=[
|
183 |
+
384,
|
184 |
+
512,
|
185 |
+
]),
|
186 |
+
type='UnrealStereo4kDataset'),
|
187 |
+
num_workers=2)
|
188 |
+
test_out_dataloader = dict(
|
189 |
+
batch_size=1,
|
190 |
+
dataset=dict(
|
191 |
+
data_root='./data/u4k',
|
192 |
+
max_depth=80,
|
193 |
+
min_depth=0.001,
|
194 |
+
mode='infer',
|
195 |
+
split='./data/u4k/splits/test_out.txt',
|
196 |
+
transform_cfg=dict(network_process_size=[
|
197 |
+
384,
|
198 |
+
512,
|
199 |
+
]),
|
200 |
+
type='UnrealStereo4kDataset'),
|
201 |
+
num_workers=2)
|
202 |
+
train_cfg = dict(
|
203 |
+
eval_start=0,
|
204 |
+
log_interval=100,
|
205 |
+
max_epochs=24,
|
206 |
+
save_checkpoint_interval=24,
|
207 |
+
train_log_img_interval=100,
|
208 |
+
val_interval=2,
|
209 |
+
val_log_img_interval=50,
|
210 |
+
val_type='epoch_base')
|
211 |
+
train_dataloader = dict(
|
212 |
+
batch_size=4,
|
213 |
+
dataset=dict(
|
214 |
+
data_root='./data/u4k',
|
215 |
+
max_depth=80,
|
216 |
+
min_depth=0.001,
|
217 |
+
mode='train',
|
218 |
+
resize_mode='depth-anything',
|
219 |
+
split='./data/u4k/splits/train.txt',
|
220 |
+
transform_cfg=dict(
|
221 |
+
degree=1.0,
|
222 |
+
network_process_size=[
|
223 |
+
392,
|
224 |
+
518,
|
225 |
+
],
|
226 |
+
random_crop=True,
|
227 |
+
random_crop_size=(
|
228 |
+
540,
|
229 |
+
960,
|
230 |
+
)),
|
231 |
+
type='UnrealStereo4kDataset'),
|
232 |
+
num_workers=4)
|
233 |
+
val_dataloader = dict(
|
234 |
+
batch_size=1,
|
235 |
+
dataset=dict(
|
236 |
+
data_root='./data/u4k',
|
237 |
+
max_depth=80,
|
238 |
+
min_depth=0.001,
|
239 |
+
mode='infer',
|
240 |
+
resize_mode='depth-anything',
|
241 |
+
split='./data/u4k/splits/val.txt',
|
242 |
+
transform_cfg=dict(
|
243 |
+
degree=1.0,
|
244 |
+
network_process_size=[
|
245 |
+
392,
|
246 |
+
518,
|
247 |
+
],
|
248 |
+
random_crop_size=(
|
249 |
+
540,
|
250 |
+
960,
|
251 |
+
)),
|
252 |
+
type='UnrealStereo4kDataset'),
|
253 |
+
num_workers=2)
|
254 |
+
work_dir = './work_dir/depthanything_vits_u4k/fine_pretrain'
|
255 |
+
zoe_depth_config = dict(
|
256 |
+
attractor_alpha=1000,
|
257 |
+
attractor_gamma=2,
|
258 |
+
attractor_kind='mean',
|
259 |
+
attractor_type='inv',
|
260 |
+
aug=True,
|
261 |
+
bin_centers_type='softplus',
|
262 |
+
bin_embedding_dim=128,
|
263 |
+
clip_grad=0.1,
|
264 |
+
dataset='nyu',
|
265 |
+
depth_anything=True,
|
266 |
+
distributed=True,
|
267 |
+
do_resize=False,
|
268 |
+
force_keep_ar=True,
|
269 |
+
freeze_midas_bn=True,
|
270 |
+
gpu='NULL',
|
271 |
+
img_size=[
|
272 |
+
392,
|
273 |
+
518,
|
274 |
+
],
|
275 |
+
inverse_midas=False,
|
276 |
+
log_images_every=0.1,
|
277 |
+
max_depth=80,
|
278 |
+
max_temp=50.0,
|
279 |
+
max_translation=100,
|
280 |
+
memory_efficient=True,
|
281 |
+
midas_model_type='vits',
|
282 |
+
min_depth=0.001,
|
283 |
+
min_temp=0.0212,
|
284 |
+
model='zoedepth',
|
285 |
+
n_attractors=[
|
286 |
+
16,
|
287 |
+
8,
|
288 |
+
4,
|
289 |
+
1,
|
290 |
+
],
|
291 |
+
n_bins=64,
|
292 |
+
name='ZoeDepth',
|
293 |
+
notes='',
|
294 |
+
output_distribution='logbinomial',
|
295 |
+
prefetch=False,
|
296 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
297 |
+
print_losses=False,
|
298 |
+
project='ZoeDepth',
|
299 |
+
random_crop=False,
|
300 |
+
random_translate=False,
|
301 |
+
root='.',
|
302 |
+
save_dir='',
|
303 |
+
shared_dict='NULL',
|
304 |
+
tags='',
|
305 |
+
train_midas=True,
|
306 |
+
translate_prob=0.2,
|
307 |
+
type='DA-ZoeDepth',
|
308 |
+
uid='NULL',
|
309 |
+
use_amp=False,
|
310 |
+
use_pretrained_midas=True,
|
311 |
+
use_shared_dict=False,
|
312 |
+
validate_every=0.25,
|
313 |
+
version_name='v1',
|
314 |
+
workers=16)
|
depthanything_vits_u4k/patchfusion/20240315_072915.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
depthanything_vits_u4k/patchfusion/checkpoint_16.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12c10292f758cc38f45bd2dad11240190d440c8416b5834180642253f0ea93b9
|
3 |
+
size 205127853
|
depthanything_vits_u4k/patchfusion/config.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'patchfusion'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
depth_anything=True,
|
37 |
+
distributed=True,
|
38 |
+
do_resize=False,
|
39 |
+
force_keep_ar=True,
|
40 |
+
freeze_midas_bn=True,
|
41 |
+
gpu='NULL',
|
42 |
+
img_size=[
|
43 |
+
392,
|
44 |
+
518,
|
45 |
+
],
|
46 |
+
inverse_midas=False,
|
47 |
+
log_images_every=0.1,
|
48 |
+
max_depth=80,
|
49 |
+
max_temp=50.0,
|
50 |
+
max_translation=100,
|
51 |
+
memory_efficient=True,
|
52 |
+
midas_model_type='vits',
|
53 |
+
min_depth=0.001,
|
54 |
+
min_temp=0.0212,
|
55 |
+
model='zoedepth',
|
56 |
+
n_attractors=[
|
57 |
+
16,
|
58 |
+
8,
|
59 |
+
4,
|
60 |
+
1,
|
61 |
+
],
|
62 |
+
n_bins=64,
|
63 |
+
name='ZoeDepth',
|
64 |
+
notes='',
|
65 |
+
output_distribution='logbinomial',
|
66 |
+
prefetch=False,
|
67 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='DA-ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
depth_anything=True,
|
97 |
+
distributed=True,
|
98 |
+
do_resize=False,
|
99 |
+
force_keep_ar=True,
|
100 |
+
freeze_midas_bn=True,
|
101 |
+
gpu='NULL',
|
102 |
+
img_size=[
|
103 |
+
392,
|
104 |
+
518,
|
105 |
+
],
|
106 |
+
inverse_midas=False,
|
107 |
+
log_images_every=0.1,
|
108 |
+
max_depth=80,
|
109 |
+
max_temp=50.0,
|
110 |
+
max_translation=100,
|
111 |
+
memory_efficient=True,
|
112 |
+
midas_model_type='vits',
|
113 |
+
min_depth=0.001,
|
114 |
+
min_temp=0.0212,
|
115 |
+
model='zoedepth',
|
116 |
+
n_attractors=[
|
117 |
+
16,
|
118 |
+
8,
|
119 |
+
4,
|
120 |
+
1,
|
121 |
+
],
|
122 |
+
n_bins=64,
|
123 |
+
name='ZoeDepth',
|
124 |
+
notes='',
|
125 |
+
output_distribution='logbinomial',
|
126 |
+
prefetch=False,
|
127 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='DA-ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
guided_fusion=dict(
|
147 |
+
g2l=True,
|
148 |
+
in_channels=[
|
149 |
+
32,
|
150 |
+
64,
|
151 |
+
64,
|
152 |
+
64,
|
153 |
+
64,
|
154 |
+
64,
|
155 |
+
],
|
156 |
+
n_channels=5,
|
157 |
+
num_patches=[
|
158 |
+
203056,
|
159 |
+
66304,
|
160 |
+
16576,
|
161 |
+
4144,
|
162 |
+
1036,
|
163 |
+
266,
|
164 |
+
],
|
165 |
+
patch_process_shape=(
|
166 |
+
392,
|
167 |
+
518,
|
168 |
+
),
|
169 |
+
type='GuidedFusionPatchFusion'),
|
170 |
+
max_depth=80,
|
171 |
+
min_depth=0.001,
|
172 |
+
patch_process_shape=(
|
173 |
+
392,
|
174 |
+
518,
|
175 |
+
),
|
176 |
+
pretrain_model=[
|
177 |
+
'./work_dir/depthanything_vits_u4k/coarse_pretrain/checkpoint_24.pth',
|
178 |
+
'./work_dir/depthanything_vits_u4k/fine_pretrain/checkpoint_24.pth',
|
179 |
+
],
|
180 |
+
sigloss=dict(type='SILogLoss'),
|
181 |
+
type='PatchFusion')
|
182 |
+
optim_wrapper = dict(
|
183 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
184 |
+
optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.001),
|
185 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
186 |
+
param_scheduler = dict(
|
187 |
+
base_momentum=0.85,
|
188 |
+
cycle_momentum=True,
|
189 |
+
div_factor=10,
|
190 |
+
final_div_factor=10000,
|
191 |
+
max_momentum=0.95,
|
192 |
+
pct_start=0.25,
|
193 |
+
three_phase=False)
|
194 |
+
project = 'patchfusion'
|
195 |
+
resume = False
|
196 |
+
tags = [
|
197 |
+
'patchfusion',
|
198 |
+
'da',
|
199 |
+
'vits',
|
200 |
+
]
|
201 |
+
test_in_dataloader = dict(
|
202 |
+
batch_size=1,
|
203 |
+
dataset=dict(
|
204 |
+
data_root='./data/u4k',
|
205 |
+
max_depth=80,
|
206 |
+
min_depth=0.001,
|
207 |
+
mode='infer',
|
208 |
+
split='./data/u4k/splits/test.txt',
|
209 |
+
transform_cfg=dict(network_process_size=[
|
210 |
+
384,
|
211 |
+
512,
|
212 |
+
]),
|
213 |
+
type='UnrealStereo4kDataset'),
|
214 |
+
num_workers=2)
|
215 |
+
test_out_dataloader = dict(
|
216 |
+
batch_size=1,
|
217 |
+
dataset=dict(
|
218 |
+
data_root='./data/u4k',
|
219 |
+
max_depth=80,
|
220 |
+
min_depth=0.001,
|
221 |
+
mode='infer',
|
222 |
+
split='./data/u4k/splits/test_out.txt',
|
223 |
+
transform_cfg=dict(network_process_size=[
|
224 |
+
384,
|
225 |
+
512,
|
226 |
+
]),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=2)
|
229 |
+
train_cfg = dict(
|
230 |
+
eval_start=0,
|
231 |
+
log_interval=100,
|
232 |
+
max_epochs=16,
|
233 |
+
save_checkpoint_interval=16,
|
234 |
+
train_log_img_interval=500,
|
235 |
+
val_interval=2,
|
236 |
+
val_log_img_interval=50,
|
237 |
+
val_type='epoch_base')
|
238 |
+
train_dataloader = dict(
|
239 |
+
batch_size=4,
|
240 |
+
dataset=dict(
|
241 |
+
data_root='./data/u4k',
|
242 |
+
max_depth=80,
|
243 |
+
min_depth=0.001,
|
244 |
+
mode='train',
|
245 |
+
resize_mode='depth-anything',
|
246 |
+
split='./data/u4k/splits/train.txt',
|
247 |
+
transform_cfg=dict(
|
248 |
+
degree=1.0,
|
249 |
+
network_process_size=[
|
250 |
+
392,
|
251 |
+
518,
|
252 |
+
],
|
253 |
+
random_crop=True,
|
254 |
+
random_crop_size=(
|
255 |
+
540,
|
256 |
+
960,
|
257 |
+
)),
|
258 |
+
type='UnrealStereo4kDataset'),
|
259 |
+
num_workers=4)
|
260 |
+
val_dataloader = dict(
|
261 |
+
batch_size=1,
|
262 |
+
dataset=dict(
|
263 |
+
data_root='./data/u4k',
|
264 |
+
max_depth=80,
|
265 |
+
min_depth=0.001,
|
266 |
+
mode='infer',
|
267 |
+
resize_mode='depth-anything',
|
268 |
+
split='./data/u4k/splits/val.txt',
|
269 |
+
transform_cfg=dict(
|
270 |
+
degree=1.0,
|
271 |
+
network_process_size=[
|
272 |
+
392,
|
273 |
+
518,
|
274 |
+
],
|
275 |
+
random_crop_size=(
|
276 |
+
540,
|
277 |
+
960,
|
278 |
+
)),
|
279 |
+
type='UnrealStereo4kDataset'),
|
280 |
+
num_workers=2)
|
281 |
+
work_dir = './work_dir/depthanything_vits_u4k/patchfusion'
|
282 |
+
zoe_depth_config = dict(
|
283 |
+
attractor_alpha=1000,
|
284 |
+
attractor_gamma=2,
|
285 |
+
attractor_kind='mean',
|
286 |
+
attractor_type='inv',
|
287 |
+
aug=True,
|
288 |
+
bin_centers_type='softplus',
|
289 |
+
bin_embedding_dim=128,
|
290 |
+
clip_grad=0.1,
|
291 |
+
dataset='nyu',
|
292 |
+
depth_anything=True,
|
293 |
+
distributed=True,
|
294 |
+
do_resize=False,
|
295 |
+
force_keep_ar=True,
|
296 |
+
freeze_midas_bn=True,
|
297 |
+
gpu='NULL',
|
298 |
+
img_size=[
|
299 |
+
392,
|
300 |
+
518,
|
301 |
+
],
|
302 |
+
inverse_midas=False,
|
303 |
+
log_images_every=0.1,
|
304 |
+
max_depth=80,
|
305 |
+
max_temp=50.0,
|
306 |
+
max_translation=100,
|
307 |
+
memory_efficient=True,
|
308 |
+
midas_model_type='vits',
|
309 |
+
min_depth=0.001,
|
310 |
+
min_temp=0.0212,
|
311 |
+
model='zoedepth',
|
312 |
+
n_attractors=[
|
313 |
+
16,
|
314 |
+
8,
|
315 |
+
4,
|
316 |
+
1,
|
317 |
+
],
|
318 |
+
n_bins=64,
|
319 |
+
name='ZoeDepth',
|
320 |
+
notes='',
|
321 |
+
output_distribution='logbinomial',
|
322 |
+
prefetch=False,
|
323 |
+
pretrained_resource='local::./work_dir/DepthAnything_vits.pt',
|
324 |
+
print_losses=False,
|
325 |
+
project='ZoeDepth',
|
326 |
+
random_crop=False,
|
327 |
+
random_translate=False,
|
328 |
+
root='.',
|
329 |
+
save_dir='',
|
330 |
+
shared_dict='NULL',
|
331 |
+
tags='',
|
332 |
+
train_midas=True,
|
333 |
+
translate_prob=0.2,
|
334 |
+
type='DA-ZoeDepth',
|
335 |
+
uid='NULL',
|
336 |
+
use_amp=False,
|
337 |
+
use_pretrained_midas=True,
|
338 |
+
use_shared_dict=False,
|
339 |
+
validate_every=0.25,
|
340 |
+
version_name='v1',
|
341 |
+
workers=16)
|
zoedepth_u4k/coarse_pretrain/20240313_154004.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zoedepth_u4k/coarse_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b241f5a664d9b8b27f138d677ca56a9b1629838c4529cced25d00043daa85950
|
3 |
+
size 4184807605
|
zoedepth_u4k/coarse_pretrain/config.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = True
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'coarse_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
distributed=True,
|
37 |
+
do_resize=False,
|
38 |
+
force_keep_ar=True,
|
39 |
+
freeze_midas_bn=True,
|
40 |
+
gpu='NULL',
|
41 |
+
img_size=[
|
42 |
+
384,
|
43 |
+
512,
|
44 |
+
],
|
45 |
+
inverse_midas=False,
|
46 |
+
log_images_every=0.1,
|
47 |
+
max_depth=80,
|
48 |
+
max_temp=50.0,
|
49 |
+
max_translation=100,
|
50 |
+
memory_efficient=True,
|
51 |
+
midas_model_type='DPT_BEiT_L_384',
|
52 |
+
min_depth=0.001,
|
53 |
+
min_temp=0.0212,
|
54 |
+
model='zoedepth',
|
55 |
+
n_attractors=[
|
56 |
+
16,
|
57 |
+
8,
|
58 |
+
4,
|
59 |
+
1,
|
60 |
+
],
|
61 |
+
n_bins=64,
|
62 |
+
name='ZoeDepth',
|
63 |
+
notes='',
|
64 |
+
output_distribution='logbinomial',
|
65 |
+
prefetch=False,
|
66 |
+
pretrained_resource=
|
67 |
+
'local::./work_dir/ZoeDepthv1_30-Dec_16-29-4e2bc436e4e1_best.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
distributed=True,
|
97 |
+
do_resize=False,
|
98 |
+
force_keep_ar=True,
|
99 |
+
freeze_midas_bn=True,
|
100 |
+
gpu='NULL',
|
101 |
+
img_size=[
|
102 |
+
384,
|
103 |
+
512,
|
104 |
+
],
|
105 |
+
inverse_midas=False,
|
106 |
+
log_images_every=0.1,
|
107 |
+
max_depth=80,
|
108 |
+
max_temp=50.0,
|
109 |
+
max_translation=100,
|
110 |
+
memory_efficient=True,
|
111 |
+
midas_model_type='DPT_BEiT_L_384',
|
112 |
+
min_depth=0.001,
|
113 |
+
min_temp=0.0212,
|
114 |
+
model='zoedepth',
|
115 |
+
n_attractors=[
|
116 |
+
16,
|
117 |
+
8,
|
118 |
+
4,
|
119 |
+
1,
|
120 |
+
],
|
121 |
+
n_bins=64,
|
122 |
+
name='ZoeDepth',
|
123 |
+
notes='',
|
124 |
+
output_distribution='logbinomial',
|
125 |
+
prefetch=False,
|
126 |
+
pretrained_resource=
|
127 |
+
'local::./work_dir/ZoeDepthv1_30-Dec_16-29-4e2bc436e4e1_best.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
sigloss=dict(type='SILogLoss'),
|
149 |
+
target='coarse',
|
150 |
+
type='BaselinePretrain')
|
151 |
+
optim_wrapper = dict(
|
152 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
153 |
+
optimizer=dict(lr=0.0002, type='AdamW', weight_decay=0.01),
|
154 |
+
paramwise_cfg=dict(
|
155 |
+
bypass_duplicate=True,
|
156 |
+
custom_keys=dict(
|
157 |
+
{'coarse_branch.core': dict(decay_mult=1.0, lr_mult=0.1)})))
|
158 |
+
param_scheduler = dict(
|
159 |
+
base_momentum=0.85,
|
160 |
+
cycle_momentum=True,
|
161 |
+
div_factor=1,
|
162 |
+
final_div_factor=10000,
|
163 |
+
max_momentum=0.95,
|
164 |
+
pct_start=0.5,
|
165 |
+
three_phase=False)
|
166 |
+
project = 'patchfusion'
|
167 |
+
resume = False
|
168 |
+
tags = [
|
169 |
+
'pcoarse',
|
170 |
+
]
|
171 |
+
test_in_dataloader = dict(
|
172 |
+
batch_size=1,
|
173 |
+
dataset=dict(
|
174 |
+
data_root='./data/u4k',
|
175 |
+
max_depth=80,
|
176 |
+
min_depth=0.001,
|
177 |
+
mode='infer',
|
178 |
+
split='./data/u4k/splits/test.txt',
|
179 |
+
transform_cfg=dict(network_process_size=[
|
180 |
+
384,
|
181 |
+
512,
|
182 |
+
]),
|
183 |
+
type='UnrealStereo4kDataset'),
|
184 |
+
num_workers=2)
|
185 |
+
test_out_dataloader = dict(
|
186 |
+
batch_size=1,
|
187 |
+
dataset=dict(
|
188 |
+
data_root='./data/u4k',
|
189 |
+
max_depth=80,
|
190 |
+
min_depth=0.001,
|
191 |
+
mode='infer',
|
192 |
+
split='./data/u4k/splits/test_out.txt',
|
193 |
+
transform_cfg=dict(network_process_size=[
|
194 |
+
384,
|
195 |
+
512,
|
196 |
+
]),
|
197 |
+
type='UnrealStereo4kDataset'),
|
198 |
+
num_workers=2)
|
199 |
+
train_cfg = dict(
|
200 |
+
eval_start=0,
|
201 |
+
log_interval=100,
|
202 |
+
max_epochs=24,
|
203 |
+
save_checkpoint_interval=24,
|
204 |
+
train_log_img_interval=100,
|
205 |
+
val_interval=2,
|
206 |
+
val_log_img_interval=50,
|
207 |
+
val_type='epoch_base')
|
208 |
+
train_dataloader = dict(
|
209 |
+
batch_size=4,
|
210 |
+
dataset=dict(
|
211 |
+
data_root='./data/u4k',
|
212 |
+
max_depth=80,
|
213 |
+
min_depth=0.001,
|
214 |
+
mode='train',
|
215 |
+
split='./data/u4k/splits/train.txt',
|
216 |
+
transform_cfg=dict(
|
217 |
+
degree=1.0,
|
218 |
+
network_process_size=[
|
219 |
+
384,
|
220 |
+
512,
|
221 |
+
],
|
222 |
+
random_crop=True,
|
223 |
+
random_crop_size=(
|
224 |
+
540,
|
225 |
+
960,
|
226 |
+
)),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=4)
|
229 |
+
val_dataloader = dict(
|
230 |
+
batch_size=1,
|
231 |
+
dataset=dict(
|
232 |
+
data_root='./data/u4k',
|
233 |
+
max_depth=80,
|
234 |
+
min_depth=0.001,
|
235 |
+
mode='infer',
|
236 |
+
split='./data/u4k/splits/val.txt',
|
237 |
+
transform_cfg=dict(
|
238 |
+
network_process_size=[
|
239 |
+
384,
|
240 |
+
512,
|
241 |
+
], random_crop_size=(
|
242 |
+
540,
|
243 |
+
960,
|
244 |
+
)),
|
245 |
+
type='UnrealStereo4kDataset'),
|
246 |
+
num_workers=2)
|
247 |
+
work_dir = './work_dir/coarse_pretrain'
|
248 |
+
zoe_depth_config = dict(
|
249 |
+
attractor_alpha=1000,
|
250 |
+
attractor_gamma=2,
|
251 |
+
attractor_kind='mean',
|
252 |
+
attractor_type='inv',
|
253 |
+
aug=True,
|
254 |
+
bin_centers_type='softplus',
|
255 |
+
bin_embedding_dim=128,
|
256 |
+
clip_grad=0.1,
|
257 |
+
dataset='nyu',
|
258 |
+
distributed=True,
|
259 |
+
do_resize=False,
|
260 |
+
force_keep_ar=True,
|
261 |
+
freeze_midas_bn=True,
|
262 |
+
gpu='NULL',
|
263 |
+
img_size=[
|
264 |
+
384,
|
265 |
+
512,
|
266 |
+
],
|
267 |
+
inverse_midas=False,
|
268 |
+
log_images_every=0.1,
|
269 |
+
max_depth=80,
|
270 |
+
max_temp=50.0,
|
271 |
+
max_translation=100,
|
272 |
+
memory_efficient=True,
|
273 |
+
midas_model_type='DPT_BEiT_L_384',
|
274 |
+
min_depth=0.001,
|
275 |
+
min_temp=0.0212,
|
276 |
+
model='zoedepth',
|
277 |
+
n_attractors=[
|
278 |
+
16,
|
279 |
+
8,
|
280 |
+
4,
|
281 |
+
1,
|
282 |
+
],
|
283 |
+
n_bins=64,
|
284 |
+
name='ZoeDepth',
|
285 |
+
notes='',
|
286 |
+
output_distribution='logbinomial',
|
287 |
+
prefetch=False,
|
288 |
+
pretrained_resource=
|
289 |
+
'local::./work_dir/ZoeDepthv1_30-Dec_16-29-4e2bc436e4e1_best.pt',
|
290 |
+
print_losses=False,
|
291 |
+
project='ZoeDepth',
|
292 |
+
random_crop=False,
|
293 |
+
random_translate=False,
|
294 |
+
root='.',
|
295 |
+
save_dir='',
|
296 |
+
shared_dict='NULL',
|
297 |
+
tags='',
|
298 |
+
train_midas=True,
|
299 |
+
translate_prob=0.2,
|
300 |
+
type='ZoeDepth',
|
301 |
+
uid='NULL',
|
302 |
+
use_amp=False,
|
303 |
+
use_pretrained_midas=True,
|
304 |
+
use_shared_dict=False,
|
305 |
+
validate_every=0.25,
|
306 |
+
version_name='v1',
|
307 |
+
workers=16)
|
zoedepth_u4k/fine_pretrain/20240313_205222.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zoedepth_u4k/fine_pretrain/checkpoint_24.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8915b17cf436ed3e1e4cfe9c3eecdfb806aa5dc0f66924de6e785f4a16c431e2
|
3 |
+
size 4184807669
|
zoedepth_u4k/fine_pretrain/config.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = True
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'fine_pretrain'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
distributed=True,
|
37 |
+
do_resize=False,
|
38 |
+
force_keep_ar=True,
|
39 |
+
freeze_midas_bn=True,
|
40 |
+
gpu='NULL',
|
41 |
+
img_size=[
|
42 |
+
384,
|
43 |
+
512,
|
44 |
+
],
|
45 |
+
inverse_midas=False,
|
46 |
+
log_images_every=0.1,
|
47 |
+
max_depth=80,
|
48 |
+
max_temp=50.0,
|
49 |
+
max_translation=100,
|
50 |
+
memory_efficient=True,
|
51 |
+
midas_model_type='DPT_BEiT_L_384',
|
52 |
+
min_depth=0.001,
|
53 |
+
min_temp=0.0212,
|
54 |
+
model='zoedepth',
|
55 |
+
n_attractors=[
|
56 |
+
16,
|
57 |
+
8,
|
58 |
+
4,
|
59 |
+
1,
|
60 |
+
],
|
61 |
+
n_bins=64,
|
62 |
+
name='ZoeDepth',
|
63 |
+
notes='',
|
64 |
+
output_distribution='logbinomial',
|
65 |
+
prefetch=False,
|
66 |
+
pretrained_resource=
|
67 |
+
'local::./work_dir/ZoeDepthv1_30-Dec_16-29-4e2bc436e4e1_best.pt',
|
68 |
+
print_losses=False,
|
69 |
+
project='ZoeDepth',
|
70 |
+
random_crop=False,
|
71 |
+
random_translate=False,
|
72 |
+
root='.',
|
73 |
+
save_dir='',
|
74 |
+
shared_dict='NULL',
|
75 |
+
tags='',
|
76 |
+
train_midas=True,
|
77 |
+
translate_prob=0.2,
|
78 |
+
type='ZoeDepth',
|
79 |
+
uid='NULL',
|
80 |
+
use_amp=False,
|
81 |
+
use_pretrained_midas=True,
|
82 |
+
use_shared_dict=False,
|
83 |
+
validate_every=0.25,
|
84 |
+
version_name='v1',
|
85 |
+
workers=16),
|
86 |
+
fine_branch=dict(
|
87 |
+
attractor_alpha=1000,
|
88 |
+
attractor_gamma=2,
|
89 |
+
attractor_kind='mean',
|
90 |
+
attractor_type='inv',
|
91 |
+
aug=True,
|
92 |
+
bin_centers_type='softplus',
|
93 |
+
bin_embedding_dim=128,
|
94 |
+
clip_grad=0.1,
|
95 |
+
dataset='nyu',
|
96 |
+
distributed=True,
|
97 |
+
do_resize=False,
|
98 |
+
force_keep_ar=True,
|
99 |
+
freeze_midas_bn=True,
|
100 |
+
gpu='NULL',
|
101 |
+
img_size=[
|
102 |
+
384,
|
103 |
+
512,
|
104 |
+
],
|
105 |
+
inverse_midas=False,
|
106 |
+
log_images_every=0.1,
|
107 |
+
max_depth=80,
|
108 |
+
max_temp=50.0,
|
109 |
+
max_translation=100,
|
110 |
+
memory_efficient=True,
|
111 |
+
midas_model_type='DPT_BEiT_L_384',
|
112 |
+
min_depth=0.001,
|
113 |
+
min_temp=0.0212,
|
114 |
+
model='zoedepth',
|
115 |
+
n_attractors=[
|
116 |
+
16,
|
117 |
+
8,
|
118 |
+
4,
|
119 |
+
1,
|
120 |
+
],
|
121 |
+
n_bins=64,
|
122 |
+
name='ZoeDepth',
|
123 |
+
notes='',
|
124 |
+
output_distribution='logbinomial',
|
125 |
+
prefetch=False,
|
126 |
+
pretrained_resource=
|
127 |
+
'local::./work_dir/ZoeDepthv1_30-Dec_16-29-4e2bc436e4e1_best.pt',
|
128 |
+
print_losses=False,
|
129 |
+
project='ZoeDepth',
|
130 |
+
random_crop=False,
|
131 |
+
random_translate=False,
|
132 |
+
root='.',
|
133 |
+
save_dir='',
|
134 |
+
shared_dict='NULL',
|
135 |
+
tags='',
|
136 |
+
train_midas=True,
|
137 |
+
translate_prob=0.2,
|
138 |
+
type='ZoeDepth',
|
139 |
+
uid='NULL',
|
140 |
+
use_amp=False,
|
141 |
+
use_pretrained_midas=True,
|
142 |
+
use_shared_dict=False,
|
143 |
+
validate_every=0.25,
|
144 |
+
version_name='v1',
|
145 |
+
workers=16),
|
146 |
+
max_depth=80,
|
147 |
+
min_depth=0.001,
|
148 |
+
sigloss=dict(type='SILogLoss'),
|
149 |
+
target='fine',
|
150 |
+
type='BaselinePretrain')
|
151 |
+
optim_wrapper = dict(
|
152 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
153 |
+
optimizer=dict(lr=0.0002, type='AdamW', weight_decay=0.01),
|
154 |
+
paramwise_cfg=dict(
|
155 |
+
bypass_duplicate=True,
|
156 |
+
custom_keys=dict(
|
157 |
+
{'fine_branch.core': dict(decay_mult=1.0, lr_mult=0.1)})))
|
158 |
+
param_scheduler = dict(
|
159 |
+
base_momentum=0.85,
|
160 |
+
cycle_momentum=True,
|
161 |
+
div_factor=1,
|
162 |
+
final_div_factor=10000,
|
163 |
+
max_momentum=0.95,
|
164 |
+
pct_start=0.5,
|
165 |
+
three_phase=False)
|
166 |
+
project = 'patchfusion'
|
167 |
+
resume = False
|
168 |
+
tags = [
|
169 |
+
'fine',
|
170 |
+
]
|
171 |
+
test_in_dataloader = dict(
|
172 |
+
batch_size=1,
|
173 |
+
dataset=dict(
|
174 |
+
data_root='./data/u4k',
|
175 |
+
max_depth=80,
|
176 |
+
min_depth=0.001,
|
177 |
+
mode='infer',
|
178 |
+
split='./data/u4k/splits/test.txt',
|
179 |
+
transform_cfg=dict(network_process_size=[
|
180 |
+
384,
|
181 |
+
512,
|
182 |
+
]),
|
183 |
+
type='UnrealStereo4kDataset'),
|
184 |
+
num_workers=2)
|
185 |
+
test_out_dataloader = dict(
|
186 |
+
batch_size=1,
|
187 |
+
dataset=dict(
|
188 |
+
data_root='./data/u4k',
|
189 |
+
max_depth=80,
|
190 |
+
min_depth=0.001,
|
191 |
+
mode='infer',
|
192 |
+
split='./data/u4k/splits/test_out.txt',
|
193 |
+
transform_cfg=dict(network_process_size=[
|
194 |
+
384,
|
195 |
+
512,
|
196 |
+
]),
|
197 |
+
type='UnrealStereo4kDataset'),
|
198 |
+
num_workers=2)
|
199 |
+
train_cfg = dict(
|
200 |
+
eval_start=0,
|
201 |
+
log_interval=100,
|
202 |
+
max_epochs=24,
|
203 |
+
save_checkpoint_interval=24,
|
204 |
+
train_log_img_interval=100,
|
205 |
+
val_interval=2,
|
206 |
+
val_log_img_interval=50,
|
207 |
+
val_type='epoch_base')
|
208 |
+
train_dataloader = dict(
|
209 |
+
batch_size=4,
|
210 |
+
dataset=dict(
|
211 |
+
data_root='./data/u4k',
|
212 |
+
max_depth=80,
|
213 |
+
min_depth=0.001,
|
214 |
+
mode='train',
|
215 |
+
split='./data/u4k/splits/train.txt',
|
216 |
+
transform_cfg=dict(
|
217 |
+
degree=1.0,
|
218 |
+
network_process_size=[
|
219 |
+
384,
|
220 |
+
512,
|
221 |
+
],
|
222 |
+
random_crop=True,
|
223 |
+
random_crop_size=(
|
224 |
+
540,
|
225 |
+
960,
|
226 |
+
)),
|
227 |
+
type='UnrealStereo4kDataset'),
|
228 |
+
num_workers=4)
|
229 |
+
val_dataloader = dict(
|
230 |
+
batch_size=1,
|
231 |
+
dataset=dict(
|
232 |
+
data_root='./data/u4k',
|
233 |
+
max_depth=80,
|
234 |
+
min_depth=0.001,
|
235 |
+
mode='infer',
|
236 |
+
split='./data/u4k/splits/val.txt',
|
237 |
+
transform_cfg=dict(
|
238 |
+
network_process_size=[
|
239 |
+
384,
|
240 |
+
512,
|
241 |
+
], random_crop_size=(
|
242 |
+
540,
|
243 |
+
960,
|
244 |
+
)),
|
245 |
+
type='UnrealStereo4kDataset'),
|
246 |
+
num_workers=2)
|
247 |
+
work_dir = './work_dir/fine_pretrain'
|
248 |
+
zoe_depth_config = dict(
|
249 |
+
attractor_alpha=1000,
|
250 |
+
attractor_gamma=2,
|
251 |
+
attractor_kind='mean',
|
252 |
+
attractor_type='inv',
|
253 |
+
aug=True,
|
254 |
+
bin_centers_type='softplus',
|
255 |
+
bin_embedding_dim=128,
|
256 |
+
clip_grad=0.1,
|
257 |
+
dataset='nyu',
|
258 |
+
distributed=True,
|
259 |
+
do_resize=False,
|
260 |
+
force_keep_ar=True,
|
261 |
+
freeze_midas_bn=True,
|
262 |
+
gpu='NULL',
|
263 |
+
img_size=[
|
264 |
+
384,
|
265 |
+
512,
|
266 |
+
],
|
267 |
+
inverse_midas=False,
|
268 |
+
log_images_every=0.1,
|
269 |
+
max_depth=80,
|
270 |
+
max_temp=50.0,
|
271 |
+
max_translation=100,
|
272 |
+
memory_efficient=True,
|
273 |
+
midas_model_type='DPT_BEiT_L_384',
|
274 |
+
min_depth=0.001,
|
275 |
+
min_temp=0.0212,
|
276 |
+
model='zoedepth',
|
277 |
+
n_attractors=[
|
278 |
+
16,
|
279 |
+
8,
|
280 |
+
4,
|
281 |
+
1,
|
282 |
+
],
|
283 |
+
n_bins=64,
|
284 |
+
name='ZoeDepth',
|
285 |
+
notes='',
|
286 |
+
output_distribution='logbinomial',
|
287 |
+
prefetch=False,
|
288 |
+
pretrained_resource=
|
289 |
+
'local::./work_dir/ZoeDepthv1_30-Dec_16-29-4e2bc436e4e1_best.pt',
|
290 |
+
print_losses=False,
|
291 |
+
project='ZoeDepth',
|
292 |
+
random_crop=False,
|
293 |
+
random_translate=False,
|
294 |
+
root='.',
|
295 |
+
save_dir='',
|
296 |
+
shared_dict='NULL',
|
297 |
+
tags='',
|
298 |
+
train_midas=True,
|
299 |
+
translate_prob=0.2,
|
300 |
+
type='ZoeDepth',
|
301 |
+
uid='NULL',
|
302 |
+
use_amp=False,
|
303 |
+
use_pretrained_midas=True,
|
304 |
+
use_shared_dict=False,
|
305 |
+
validate_every=0.25,
|
306 |
+
version_name='v1',
|
307 |
+
workers=16)
|
zoedepth_u4k/patchfusion/20240314_171340.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zoedepth_u4k/patchfusion/checkpoint_16.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e414483120fa6b95ced56e55b3cb5e711b076f9cc1f62a5c54d1edecc5c90fab
|
3 |
+
size 1055616493
|
zoedepth_u4k/patchfusion/config.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
collect_input_args = [
|
2 |
+
'image_lr',
|
3 |
+
'crops_image_hr',
|
4 |
+
'depth_gt',
|
5 |
+
'crop_depths',
|
6 |
+
'bboxs',
|
7 |
+
'image_hr',
|
8 |
+
]
|
9 |
+
convert_syncbn = True
|
10 |
+
debug = False
|
11 |
+
env_cfg = dict(
|
12 |
+
cudnn_benchmark=True,
|
13 |
+
dist_cfg=dict(backend='nccl'),
|
14 |
+
mp_cfg=dict(mp_start_method='forkserver'))
|
15 |
+
find_unused_parameters = True
|
16 |
+
general_dataloader = dict(
|
17 |
+
batch_size=1,
|
18 |
+
dataset=dict(
|
19 |
+
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
|
20 |
+
num_workers=2)
|
21 |
+
launcher = 'pytorch'
|
22 |
+
log_name = 'patchfusion'
|
23 |
+
max_depth = 80
|
24 |
+
min_depth = 0.001
|
25 |
+
model = dict(
|
26 |
+
coarse_branch=dict(
|
27 |
+
attractor_alpha=1000,
|
28 |
+
attractor_gamma=2,
|
29 |
+
attractor_kind='mean',
|
30 |
+
attractor_type='inv',
|
31 |
+
aug=True,
|
32 |
+
bin_centers_type='softplus',
|
33 |
+
bin_embedding_dim=128,
|
34 |
+
clip_grad=0.1,
|
35 |
+
dataset='nyu',
|
36 |
+
distributed=True,
|
37 |
+
do_resize=False,
|
38 |
+
force_keep_ar=True,
|
39 |
+
freeze_midas_bn=True,
|
40 |
+
gpu='NULL',
|
41 |
+
img_size=[
|
42 |
+
384,
|
43 |
+
512,
|
44 |
+
],
|
45 |
+
inverse_midas=False,
|
46 |
+
log_images_every=0.1,
|
47 |
+
max_depth=80,
|
48 |
+
max_temp=50.0,
|
49 |
+
max_translation=100,
|
50 |
+
memory_efficient=True,
|
51 |
+
midas_model_type='DPT_BEiT_L_384',
|
52 |
+
min_depth=0.001,
|
53 |
+
min_temp=0.0212,
|
54 |
+
model='zoedepth',
|
55 |
+
n_attractors=[
|
56 |
+
16,
|
57 |
+
8,
|
58 |
+
4,
|
59 |
+
1,
|
60 |
+
],
|
61 |
+
n_bins=64,
|
62 |
+
name='ZoeDepth',
|
63 |
+
notes='',
|
64 |
+
output_distribution='logbinomial',
|
65 |
+
prefetch=False,
|
66 |
+
pretrained_resource='local::./work_dir/ZoeDepthv1.pt',
|
67 |
+
print_losses=False,
|
68 |
+
project='ZoeDepth',
|
69 |
+
random_crop=False,
|
70 |
+
random_translate=False,
|
71 |
+
root='.',
|
72 |
+
save_dir='',
|
73 |
+
shared_dict='NULL',
|
74 |
+
tags='',
|
75 |
+
train_midas=True,
|
76 |
+
translate_prob=0.2,
|
77 |
+
type='ZoeDepth',
|
78 |
+
uid='NULL',
|
79 |
+
use_amp=False,
|
80 |
+
use_pretrained_midas=True,
|
81 |
+
use_shared_dict=False,
|
82 |
+
validate_every=0.25,
|
83 |
+
version_name='v1',
|
84 |
+
workers=16),
|
85 |
+
fine_branch=dict(
|
86 |
+
attractor_alpha=1000,
|
87 |
+
attractor_gamma=2,
|
88 |
+
attractor_kind='mean',
|
89 |
+
attractor_type='inv',
|
90 |
+
aug=True,
|
91 |
+
bin_centers_type='softplus',
|
92 |
+
bin_embedding_dim=128,
|
93 |
+
clip_grad=0.1,
|
94 |
+
dataset='nyu',
|
95 |
+
distributed=True,
|
96 |
+
do_resize=False,
|
97 |
+
force_keep_ar=True,
|
98 |
+
freeze_midas_bn=True,
|
99 |
+
gpu='NULL',
|
100 |
+
img_size=[
|
101 |
+
384,
|
102 |
+
512,
|
103 |
+
],
|
104 |
+
inverse_midas=False,
|
105 |
+
log_images_every=0.1,
|
106 |
+
max_depth=80,
|
107 |
+
max_temp=50.0,
|
108 |
+
max_translation=100,
|
109 |
+
memory_efficient=True,
|
110 |
+
midas_model_type='DPT_BEiT_L_384',
|
111 |
+
min_depth=0.001,
|
112 |
+
min_temp=0.0212,
|
113 |
+
model='zoedepth',
|
114 |
+
n_attractors=[
|
115 |
+
16,
|
116 |
+
8,
|
117 |
+
4,
|
118 |
+
1,
|
119 |
+
],
|
120 |
+
n_bins=64,
|
121 |
+
name='ZoeDepth',
|
122 |
+
notes='',
|
123 |
+
output_distribution='logbinomial',
|
124 |
+
prefetch=False,
|
125 |
+
pretrained_resource='local::./work_dir/ZoeDepthv1.pt',
|
126 |
+
print_losses=False,
|
127 |
+
project='ZoeDepth',
|
128 |
+
random_crop=False,
|
129 |
+
random_translate=False,
|
130 |
+
root='.',
|
131 |
+
save_dir='',
|
132 |
+
shared_dict='NULL',
|
133 |
+
tags='',
|
134 |
+
train_midas=True,
|
135 |
+
translate_prob=0.2,
|
136 |
+
type='ZoeDepth',
|
137 |
+
uid='NULL',
|
138 |
+
use_amp=False,
|
139 |
+
use_pretrained_midas=True,
|
140 |
+
use_shared_dict=False,
|
141 |
+
validate_every=0.25,
|
142 |
+
version_name='v1',
|
143 |
+
workers=16),
|
144 |
+
guided_fusion=dict(g2l=True, n_channels=5, type='GuidedFusionPatchFusion'),
|
145 |
+
max_depth=80,
|
146 |
+
min_depth=0.001,
|
147 |
+
pretrain_model=[
|
148 |
+
'./work_dir/coarse_pretrain/checkpoint_24.pth',
|
149 |
+
'./work_dir/fine_pretrain/checkpoint_24.pth',
|
150 |
+
],
|
151 |
+
sigloss=dict(type='SILogLoss'),
|
152 |
+
type='PatchFusion')
|
153 |
+
optim_wrapper = dict(
|
154 |
+
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
|
155 |
+
optimizer=dict(lr=0.0001, type='AdamW', weight_decay=0.001),
|
156 |
+
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
|
157 |
+
param_scheduler = dict(
|
158 |
+
base_momentum=0.85,
|
159 |
+
cycle_momentum=True,
|
160 |
+
div_factor=10,
|
161 |
+
final_div_factor=10000,
|
162 |
+
max_momentum=0.95,
|
163 |
+
pct_start=0.25,
|
164 |
+
three_phase=False)
|
165 |
+
project = 'patchfusion'
|
166 |
+
resume = False
|
167 |
+
tags = [
|
168 |
+
'patchfusion',
|
169 |
+
]
|
170 |
+
test_in_dataloader = dict(
|
171 |
+
batch_size=1,
|
172 |
+
dataset=dict(
|
173 |
+
data_root='./data/u4k',
|
174 |
+
max_depth=80,
|
175 |
+
min_depth=0.001,
|
176 |
+
mode='infer',
|
177 |
+
split='./data/u4k/splits/test.txt',
|
178 |
+
transform_cfg=dict(network_process_size=[
|
179 |
+
384,
|
180 |
+
512,
|
181 |
+
]),
|
182 |
+
type='UnrealStereo4kDataset'),
|
183 |
+
num_workers=2)
|
184 |
+
test_out_dataloader = dict(
|
185 |
+
batch_size=1,
|
186 |
+
dataset=dict(
|
187 |
+
data_root='./data/u4k',
|
188 |
+
max_depth=80,
|
189 |
+
min_depth=0.001,
|
190 |
+
mode='infer',
|
191 |
+
split='./data/u4k/splits/test_out.txt',
|
192 |
+
transform_cfg=dict(network_process_size=[
|
193 |
+
384,
|
194 |
+
512,
|
195 |
+
]),
|
196 |
+
type='UnrealStereo4kDataset'),
|
197 |
+
num_workers=2)
|
198 |
+
train_cfg = dict(
|
199 |
+
eval_start=0,
|
200 |
+
log_interval=100,
|
201 |
+
max_epochs=16,
|
202 |
+
save_checkpoint_interval=16,
|
203 |
+
train_log_img_interval=500,
|
204 |
+
val_interval=2,
|
205 |
+
val_log_img_interval=10,
|
206 |
+
val_type='epoch_base')
|
207 |
+
train_dataloader = dict(
|
208 |
+
batch_size=4,
|
209 |
+
dataset=dict(
|
210 |
+
data_root='./data/u4k',
|
211 |
+
max_depth=80,
|
212 |
+
min_depth=0.001,
|
213 |
+
mode='train',
|
214 |
+
split='./data/u4k/splits/train.txt',
|
215 |
+
transform_cfg=dict(
|
216 |
+
degree=1.0,
|
217 |
+
network_process_size=[
|
218 |
+
384,
|
219 |
+
512,
|
220 |
+
],
|
221 |
+
random_crop=True,
|
222 |
+
random_crop_size=(
|
223 |
+
540,
|
224 |
+
960,
|
225 |
+
)),
|
226 |
+
type='UnrealStereo4kDataset'),
|
227 |
+
num_workers=4)
|
228 |
+
val_dataloader = dict(
|
229 |
+
batch_size=1,
|
230 |
+
dataset=dict(
|
231 |
+
data_root='./data/u4k',
|
232 |
+
max_depth=80,
|
233 |
+
min_depth=0.001,
|
234 |
+
mode='infer',
|
235 |
+
split='./data/u4k/splits/val.txt',
|
236 |
+
transform_cfg=dict(
|
237 |
+
network_process_size=[
|
238 |
+
384,
|
239 |
+
512,
|
240 |
+
], random_crop_size=(
|
241 |
+
540,
|
242 |
+
960,
|
243 |
+
)),
|
244 |
+
type='UnrealStereo4kDataset'),
|
245 |
+
num_workers=2)
|
246 |
+
work_dir = './work_dir/patchfusion'
|
247 |
+
zoe_depth_config = dict(
|
248 |
+
attractor_alpha=1000,
|
249 |
+
attractor_gamma=2,
|
250 |
+
attractor_kind='mean',
|
251 |
+
attractor_type='inv',
|
252 |
+
aug=True,
|
253 |
+
bin_centers_type='softplus',
|
254 |
+
bin_embedding_dim=128,
|
255 |
+
clip_grad=0.1,
|
256 |
+
dataset='nyu',
|
257 |
+
distributed=True,
|
258 |
+
do_resize=False,
|
259 |
+
force_keep_ar=True,
|
260 |
+
freeze_midas_bn=True,
|
261 |
+
gpu='NULL',
|
262 |
+
img_size=[
|
263 |
+
384,
|
264 |
+
512,
|
265 |
+
],
|
266 |
+
inverse_midas=False,
|
267 |
+
log_images_every=0.1,
|
268 |
+
max_depth=80,
|
269 |
+
max_temp=50.0,
|
270 |
+
max_translation=100,
|
271 |
+
memory_efficient=True,
|
272 |
+
midas_model_type='DPT_BEiT_L_384',
|
273 |
+
min_depth=0.001,
|
274 |
+
min_temp=0.0212,
|
275 |
+
model='zoedepth',
|
276 |
+
n_attractors=[
|
277 |
+
16,
|
278 |
+
8,
|
279 |
+
4,
|
280 |
+
1,
|
281 |
+
],
|
282 |
+
n_bins=64,
|
283 |
+
name='ZoeDepth',
|
284 |
+
notes='',
|
285 |
+
output_distribution='logbinomial',
|
286 |
+
prefetch=False,
|
287 |
+
pretrained_resource='local::./work_dir/ZoeDepthv1.pt',
|
288 |
+
print_losses=False,
|
289 |
+
project='ZoeDepth',
|
290 |
+
random_crop=False,
|
291 |
+
random_translate=False,
|
292 |
+
root='.',
|
293 |
+
save_dir='',
|
294 |
+
shared_dict='NULL',
|
295 |
+
tags='',
|
296 |
+
train_midas=True,
|
297 |
+
translate_prob=0.2,
|
298 |
+
type='ZoeDepth',
|
299 |
+
uid='NULL',
|
300 |
+
use_amp=False,
|
301 |
+
use_pretrained_midas=True,
|
302 |
+
use_shared_dict=False,
|
303 |
+
validate_every=0.25,
|
304 |
+
version_name='v1',
|
305 |
+
workers=16)
|