File size: 80,167 Bytes
935a102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
2024/03/15 15:30:44 - patchstitcher - INFO -
------------------------------------------------------------
System environment:
sys.platform: linux
Python: 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) [GCC 12.3.0]
CUDA available: True
numpy_random_seed: 621
GPU 0,1,2,3: NVIDIA A100-SXM4-80GB
CUDA_HOME: /sw/rl9g/cuda/11.8/rl9_binary
NVCC: Cuda compilation tools, release 11.8, V11.8.89
GCC: gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)
PyTorch: 2.1.2
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.7
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.16.2
OpenCV: 4.8.1
MMEngine: 0.10.2
Runtime environment:
cudnn_benchmark: True
mp_cfg: {'mp_start_method': 'forkserver'}
dist_cfg: {'backend': 'nccl'}
seed: 621
Distributed launcher: pytorch
Distributed training: True
GPU number: 4
------------------------------------------------------------
2024/03/15 15:30:44 - patchstitcher - INFO - Config:
collect_input_args = [
'image_lr',
'crops_image_hr',
'depth_gt',
'crop_depths',
'bboxs',
'image_hr',
]
convert_syncbn = True
debug = False
env_cfg = dict(
cudnn_benchmark=True,
dist_cfg=dict(backend='nccl'),
mp_cfg=dict(mp_start_method='forkserver'))
find_unused_parameters = True
general_dataloader = dict(
batch_size=1,
dataset=dict(
dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
num_workers=2)
launcher = 'pytorch'
log_name = 'fine_pretrain'
max_depth = 80
min_depth = 0.001
model = dict(
coarse_branch=dict(
attractor_alpha=1000,
attractor_gamma=2,
attractor_kind='mean',
attractor_type='inv',
aug=True,
bin_centers_type='softplus',
bin_embedding_dim=128,
clip_grad=0.1,
dataset='nyu',
depth_anything=True,
distributed=True,
do_resize=False,
force_keep_ar=True,
freeze_midas_bn=True,
gpu='NULL',
img_size=[
392,
518,
],
inverse_midas=False,
log_images_every=0.1,
max_depth=80,
max_temp=50.0,
max_translation=100,
memory_efficient=True,
midas_model_type='vitb',
min_depth=0.001,
min_temp=0.0212,
model='zoedepth',
n_attractors=[
16,
8,
4,
1,
],
n_bins=64,
name='ZoeDepth',
notes='',
output_distribution='logbinomial',
prefetch=False,
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
print_losses=False,
project='ZoeDepth',
random_crop=False,
random_translate=False,
root='.',
save_dir='',
shared_dict='NULL',
tags='',
train_midas=True,
translate_prob=0.2,
type='DA-ZoeDepth',
uid='NULL',
use_amp=False,
use_pretrained_midas=True,
use_shared_dict=False,
validate_every=0.25,
version_name='v1',
workers=16),
fine_branch=dict(
attractor_alpha=1000,
attractor_gamma=2,
attractor_kind='mean',
attractor_type='inv',
aug=True,
bin_centers_type='softplus',
bin_embedding_dim=128,
clip_grad=0.1,
dataset='nyu',
depth_anything=True,
distributed=True,
do_resize=False,
force_keep_ar=True,
freeze_midas_bn=True,
gpu='NULL',
img_size=[
392,
518,
],
inverse_midas=False,
log_images_every=0.1,
max_depth=80,
max_temp=50.0,
max_translation=100,
memory_efficient=True,
midas_model_type='vitb',
min_depth=0.001,
min_temp=0.0212,
model='zoedepth',
n_attractors=[
16,
8,
4,
1,
],
n_bins=64,
name='ZoeDepth',
notes='',
output_distribution='logbinomial',
prefetch=False,
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
print_losses=False,
project='ZoeDepth',
random_crop=False,
random_translate=False,
root='.',
save_dir='',
shared_dict='NULL',
tags='',
train_midas=True,
translate_prob=0.2,
type='DA-ZoeDepth',
uid='NULL',
use_amp=False,
use_pretrained_midas=True,
use_shared_dict=False,
validate_every=0.25,
version_name='v1',
workers=16),
max_depth=80,
min_depth=0.001,
patch_process_shape=(
392,
518,
),
sigloss=dict(type='SILogLoss'),
target='fine',
type='BaselinePretrain')
optim_wrapper = dict(
clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
param_scheduler = dict(
base_momentum=0.85,
cycle_momentum=True,
div_factor=1,
final_div_factor=10000,
max_momentum=0.95,
pct_start=0.5,
three_phase=False)
project = 'patchfusion'
tags = [
'fine',
'da',
'vitb',
]
test_in_dataloader = dict(
batch_size=1,
dataset=dict(
data_root='./data/u4k',
max_depth=80,
min_depth=0.001,
mode='infer',
split='./data/u4k/splits/test.txt',
transform_cfg=dict(network_process_size=[
384,
512,
]),
type='UnrealStereo4kDataset'),
num_workers=2)
test_out_dataloader = dict(
batch_size=1,
dataset=dict(
data_root='./data/u4k',
max_depth=80,
min_depth=0.001,
mode='infer',
split='./data/u4k/splits/test_out.txt',
transform_cfg=dict(network_process_size=[
384,
512,
]),
type='UnrealStereo4kDataset'),
num_workers=2)
train_cfg = dict(
eval_start=0,
log_interval=100,
max_epochs=24,
save_checkpoint_interval=24,
train_log_img_interval=500,
val_interval=2,
val_log_img_interval=50,
val_type='epoch_base')
train_dataloader = dict(
batch_size=4,
dataset=dict(
data_root='./data/u4k',
max_depth=80,
min_depth=0.001,
mode='train',
resize_mode='depth-anything',
split='./data/u4k/splits/train.txt',
transform_cfg=dict(
degree=1.0, network_process_size=[
392,
518,
], random_crop=True),
type='UnrealStereo4kDataset'),
num_workers=4)
val_dataloader = dict(
batch_size=1,
dataset=dict(
data_root='./data/u4k',
max_depth=80,
min_depth=0.001,
mode='infer',
resize_mode='depth-anything',
split='./data/u4k/splits/val.txt',
transform_cfg=dict(degree=1.0, network_process_size=[
392,
518,
]),
type='UnrealStereo4kDataset'),
num_workers=2)
work_dir = './work_dir/depthanything_vitb_u4k/fine_pretrain'
zoe_depth_config = dict(
attractor_alpha=1000,
attractor_gamma=2,
attractor_kind='mean',
attractor_type='inv',
aug=True,
bin_centers_type='softplus',
bin_embedding_dim=128,
clip_grad=0.1,
dataset='nyu',
depth_anything=True,
distributed=True,
do_resize=False,
force_keep_ar=True,
freeze_midas_bn=True,
gpu='NULL',
img_size=[
392,
518,
],
inverse_midas=False,
log_images_every=0.1,
max_depth=80,
max_temp=50.0,
max_translation=100,
memory_efficient=True,
midas_model_type='vitb',
min_depth=0.001,
min_temp=0.0212,
model='zoedepth',
n_attractors=[
16,
8,
4,
1,
],
n_bins=64,
name='ZoeDepth',
notes='',
output_distribution='logbinomial',
prefetch=False,
pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
print_losses=False,
project='ZoeDepth',
random_crop=False,
random_translate=False,
root='.',
save_dir='',
shared_dict='NULL',
tags='',
train_midas=True,
translate_prob=0.2,
type='DA-ZoeDepth',
uid='NULL',
use_amp=False,
use_pretrained_midas=True,
use_shared_dict=False,
validate_every=0.25,
version_name='v1',
workers=16)
2024/03/15 15:30:45 - patchstitcher - INFO - Loading deepnet from local::./work_dir/DepthAnything_vitb.pt
2024/03/15 15:30:45 - patchstitcher - INFO - Current zoedepth.core.prep.resizer is <class 'torch.nn.modules.linear.Identity'>
2024/03/15 15:30:45 - patchstitcher - INFO - DistributedDataParallel(
(module): BaselinePretrain(
(fine_branch): ZoeDepth(
(core): DepthAnythingCore(
(core): DPT_DINOv2(
(pretrained): DinoVisionTransformer(
(patch_embed): PatchEmbed(
(proj): Conv2d(3, 768, kernel_size=(14, 14), stride=(14, 14))
(norm): Identity()
)
(blocks): ModuleList(
(0-11): 12 x NestedTensorBlock(
(norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(attn): MemEffAttention(
(qkv): Linear(in_features=768, out_features=2304, bias=True)
(attn_drop): Dropout(p=0.0, inplace=False)
(proj): Linear(in_features=768, out_features=768, bias=True)
(proj_drop): Dropout(p=0.0, inplace=False)
)
(ls1): LayerScale()
(drop_path1): Identity()
(norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(mlp): Mlp(
(fc1): Linear(in_features=768, out_features=3072, bias=True)
(act): GELU(approximate='none')
(fc2): Linear(in_features=3072, out_features=768, bias=True)
(drop): Dropout(p=0.0, inplace=False)
)
(ls2): LayerScale()
(drop_path2): Identity()
)
)
(norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
(head): Identity()
)
(depth_head): DPTHead(
(projects): ModuleList(
(0): Conv2d(768, 96, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))
(3): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
)
(resize_layers): ModuleList(
(0): ConvTranspose2d(96, 96, kernel_size=(4, 4), stride=(4, 4))
(1): ConvTranspose2d(192, 192, kernel_size=(2, 2), stride=(2, 2))
(2): Identity()
(3): Conv2d(768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
)
(scratch): Module(
(layer1_rn): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(layer2_rn): Conv2d(192, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(layer3_rn): Conv2d(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(layer4_rn): Conv2d(768, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(refinenet1): FeatureFusionBlock(
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(resConfUnit1): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(resConfUnit2): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(refinenet2): FeatureFusionBlock(
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(resConfUnit1): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(resConfUnit2): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(refinenet3): FeatureFusionBlock(
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(resConfUnit1): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(resConfUnit2): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(refinenet4): FeatureFusionBlock(
(out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(resConfUnit1): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(resConfUnit2): ResidualConvUnit(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(activation): ReLU()
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(skip_add): FloatFunctional(
(activation_post_process): Identity()
)
)
(output_conv1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(output_conv2): Sequential(
(0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
(3): ReLU(inplace=True)
(4): Identity()
)
)
)
)
)
(conv2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(seed_bin_regressor): SeedBinRegressorUnnormed(
(_net): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
(3): Softplus(beta=1, threshold=20)
)
)
(seed_projector): Projector(
(_net): Sequential(
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
)
)
(projectors): ModuleList(
(0-3): 4 x Projector(
(_net): Sequential(
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
)
)
)
(attractors): ModuleList(
(0): AttractorLayerUnnormed(
(_net): Sequential(
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
(3): Softplus(beta=1, threshold=20)
)
)
(1): AttractorLayerUnnormed(
(_net): Sequential(
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
(3): Softplus(beta=1, threshold=20)
)
)
(2): AttractorLayerUnnormed(
(_net): Sequential(
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
(3): Softplus(beta=1, threshold=20)
)
)
(3): AttractorLayerUnnormed(
(_net): Sequential(
(0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
(3): Softplus(beta=1, threshold=20)
)
)
)
(conditional_log_binomial): ConditionalLogBinomial(
(log_binomial_transform): LogBinomial()
(mlp): Sequential(
(0): Conv2d(161, 80, kernel_size=(1, 1), stride=(1, 1))
(1): GELU(approximate='none')
(2): Conv2d(80, 4, kernel_size=(1, 1), stride=(1, 1))
(3): Softplus(beta=1, threshold=20)
)
)
)
(sigloss): SILogLoss()
)
)
2024/03/15 15:30:51 - patchstitcher - INFO - successfully init trainer
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.cls_token
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.pos_embed
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.mask_token
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer1_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer2_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer3_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer4_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.bias
2024/03/15 15:33:25 - patchstitcher - INFO - Epoch: [01/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.288588523864746 - fine_loss: 2.288588523864746
2024/03/15 15:35:13 - patchstitcher - INFO - Epoch: [01/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.749260425567627 - fine_loss: 1.749260425567627
2024/03/15 15:36:58 - patchstitcher - INFO - Epoch: [01/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.603142499923706 - fine_loss: 2.603142499923706
2024/03/15 15:38:59 - patchstitcher - INFO - Epoch: [01/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 3.0235860347747803 - fine_loss: 3.0235860347747803
2024/03/15 15:42:38 - patchstitcher - INFO - Epoch: [02/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.2628891468048096 - fine_loss: 2.2628891468048096
2024/03/15 15:44:44 - patchstitcher - INFO - Epoch: [02/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.2125635147094727 - fine_loss: 2.2125635147094727
2024/03/15 15:46:44 - patchstitcher - INFO - Epoch: [02/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.884977102279663 - fine_loss: 1.884977102279663
2024/03/15 15:48:46 - patchstitcher - INFO - Epoch: [02/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 3.667808771133423 - fine_loss: 3.667808771133423
2024/03/15 15:50:43 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| 0.7653929 | 0.9569647 | 0.9891034 | 0.1631364 | 2.063872 | 0.0675193 | 0.2015772 | 17.5721867 | 0.3284417 | 1.5396647 |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 15:52:52 - patchstitcher - INFO - Epoch: [03/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.9002115726470947 - fine_loss: 1.9002115726470947
2024/03/15 15:54:51 - patchstitcher - INFO - Epoch: [03/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.533200979232788 - fine_loss: 1.533200979232788
2024/03/15 15:56:53 - patchstitcher - INFO - Epoch: [03/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3708069324493408 - fine_loss: 1.3708069324493408
2024/03/15 15:58:56 - patchstitcher - INFO - Epoch: [03/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.3536834716796875 - fine_loss: 1.3536834716796875
2024/03/15 16:02:35 - patchstitcher - INFO - Epoch: [04/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4067535400390625 - fine_loss: 1.4067535400390625
2024/03/15 16:04:38 - patchstitcher - INFO - Epoch: [04/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.571197509765625 - fine_loss: 1.571197509765625
2024/03/15 16:06:40 - patchstitcher - INFO - Epoch: [04/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.9749035835266113 - fine_loss: 2.9749035835266113
2024/03/15 16:08:48 - patchstitcher - INFO - Epoch: [04/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.893333911895752 - fine_loss: 0.893333911895752
2024/03/15 16:10:40 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
| 0.8439181 | 0.9733375 | 0.992747 | 0.1316369 | 1.8230734 | 0.0558847 | 0.171333 | 15.4284363 | 0.2575101 | 1.3799866 |
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
2024/03/15 16:12:51 - patchstitcher - INFO - Epoch: [05/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5204694271087646 - fine_loss: 1.5204694271087646
2024/03/15 16:14:53 - patchstitcher - INFO - Epoch: [05/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0538222789764404 - fine_loss: 1.0538222789764404
2024/03/15 16:17:00 - patchstitcher - INFO - Epoch: [05/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.246050477027893 - fine_loss: 1.246050477027893
2024/03/15 16:19:04 - patchstitcher - INFO - Epoch: [05/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4139764308929443 - fine_loss: 1.4139764308929443
2024/03/15 16:22:40 - patchstitcher - INFO - Epoch: [06/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5990095138549805 - fine_loss: 1.5990095138549805
2024/03/15 16:24:45 - patchstitcher - INFO - Epoch: [06/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4719877243041992 - fine_loss: 1.4719877243041992
2024/03/15 16:26:49 - patchstitcher - INFO - Epoch: [06/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.998321533203125 - fine_loss: 0.998321533203125
2024/03/15 16:28:52 - patchstitcher - INFO - Epoch: [06/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2637615203857422 - fine_loss: 1.2637615203857422
2024/03/15 16:30:46 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.8831826 | 0.9846013 | 0.9953048 | 0.1145366 | 1.6448599 | 0.0488564 | 0.1510406 | 14.0402038 | 0.2199031 | 1.3085128 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 16:32:53 - patchstitcher - INFO - Epoch: [07/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.65132737159729 - fine_loss: 1.65132737159729
2024/03/15 16:34:56 - patchstitcher - INFO - Epoch: [07/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4322144985198975 - fine_loss: 1.4322144985198975
2024/03/15 16:37:04 - patchstitcher - INFO - Epoch: [07/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.034339427947998 - fine_loss: 1.034339427947998
2024/03/15 16:39:08 - patchstitcher - INFO - Epoch: [07/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0732086896896362 - fine_loss: 1.0732086896896362
2024/03/15 16:42:43 - patchstitcher - INFO - Epoch: [08/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3489086627960205 - fine_loss: 1.3489086627960205
2024/03/15 16:44:47 - patchstitcher - INFO - Epoch: [08/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4356486797332764 - fine_loss: 1.4356486797332764
2024/03/15 16:46:50 - patchstitcher - INFO - Epoch: [08/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6865524649620056 - fine_loss: 0.6865524649620056
2024/03/15 16:48:50 - patchstitcher - INFO - Epoch: [08/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4590085744857788 - fine_loss: 1.4590085744857788
2024/03/15 16:50:41 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
| 0.8921932 | 0.9874671 | 0.9972081 | 0.1083586 | 1.6257898 | 0.0457595 | 0.142043 | 12.7745355 | 0.2076856 | 1.2743567 |
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
2024/03/15 16:52:44 - patchstitcher - INFO - Epoch: [09/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.008254885673523 - fine_loss: 1.008254885673523
2024/03/15 16:54:54 - patchstitcher - INFO - Epoch: [09/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8210620880126953 - fine_loss: 0.8210620880126953
2024/03/15 16:56:55 - patchstitcher - INFO - Epoch: [09/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.8681334257125854 - fine_loss: 1.8681334257125854
2024/03/15 16:58:59 - patchstitcher - INFO - Epoch: [09/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9568914771080017 - fine_loss: 0.9568914771080017
2024/03/15 17:02:34 - patchstitcher - INFO - Epoch: [10/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5452194213867188 - fine_loss: 1.5452194213867188
2024/03/15 17:04:40 - patchstitcher - INFO - Epoch: [10/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9237810373306274 - fine_loss: 0.9237810373306274
2024/03/15 17:06:43 - patchstitcher - INFO - Epoch: [10/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.4192367792129517 - fine_loss: 1.4192367792129517
2024/03/15 17:08:47 - patchstitcher - INFO - Epoch: [10/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.1616711616516113 - fine_loss: 1.1616711616516113
2024/03/15 17:10:40 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| 0.9095374 | 0.9878494 | 0.996491 | 0.1000458 | 1.529536 | 0.0445519 | 0.1377915 | 12.2980782 | 0.1741764 | 1.1720957 |
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 17:12:48 - patchstitcher - INFO - Epoch: [11/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2545241117477417 - fine_loss: 1.2545241117477417
2024/03/15 17:14:52 - patchstitcher - INFO - Epoch: [11/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9477699398994446 - fine_loss: 0.9477699398994446
2024/03/15 17:16:59 - patchstitcher - INFO - Epoch: [11/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3806159496307373 - fine_loss: 1.3806159496307373
2024/03/15 17:19:02 - patchstitcher - INFO - Epoch: [11/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.12031888961792 - fine_loss: 1.12031888961792
2024/03/15 17:22:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9633316993713379 - fine_loss: 0.9633316993713379
2024/03/15 17:24:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9473192691802979 - fine_loss: 0.9473192691802979
2024/03/15 17:26:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8891739845275879 - fine_loss: 0.8891739845275879
2024/03/15 17:28:46 - patchstitcher - INFO - Epoch: [12/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9305822849273682 - fine_loss: 0.9305822849273682
2024/03/15 17:30:43 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9285209 | 0.9902661 | 0.9963124 | 0.0922186 | 1.4988106 | 0.0394503 | 0.1265562 | 11.929424 | 0.1792194 | 1.2142439 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 17:32:52 - patchstitcher - INFO - Epoch: [13/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.26497220993042 - fine_loss: 1.26497220993042
2024/03/15 17:35:00 - patchstitcher - INFO - Epoch: [13/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.580217957496643 - fine_loss: 1.580217957496643
2024/03/15 17:36:59 - patchstitcher - INFO - Epoch: [13/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6395942568778992 - fine_loss: 0.6395942568778992
2024/03/15 17:39:02 - patchstitcher - INFO - Epoch: [13/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.32594698667526245 - fine_loss: 0.32594698667526245
2024/03/15 17:42:34 - patchstitcher - INFO - Epoch: [14/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.924031674861908 - fine_loss: 0.924031674861908
2024/03/15 17:44:36 - patchstitcher - INFO - Epoch: [14/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.985018253326416 - fine_loss: 0.985018253326416
2024/03/15 17:46:38 - patchstitcher - INFO - Epoch: [14/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0442320108413696 - fine_loss: 1.0442320108413696
2024/03/15 17:48:43 - patchstitcher - INFO - Epoch: [14/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5068702101707458 - fine_loss: 0.5068702101707458
2024/03/15 17:50:33 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.9381619 | 0.9895476 | 0.9972216 | 0.0913334 | 1.5578288 | 0.0391697 | 0.1243245 | 11.1463653 | 0.1706981 | 1.1217431 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 17:52:46 - patchstitcher - INFO - Epoch: [15/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1108862161636353 - fine_loss: 1.1108862161636353
2024/03/15 17:54:52 - patchstitcher - INFO - Epoch: [15/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9237959980964661 - fine_loss: 0.9237959980964661
2024/03/15 17:56:56 - patchstitcher - INFO - Epoch: [15/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.5644421577453613 - fine_loss: 1.5644421577453613
2024/03/15 17:58:54 - patchstitcher - INFO - Epoch: [15/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7902756929397583 - fine_loss: 0.7902756929397583
2024/03/15 18:02:26 - patchstitcher - INFO - Epoch: [16/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.966326117515564 - fine_loss: 0.966326117515564
2024/03/15 18:04:32 - patchstitcher - INFO - Epoch: [16/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9776898622512817 - fine_loss: 0.9776898622512817
2024/03/15 18:06:33 - patchstitcher - INFO - Epoch: [16/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6681317090988159 - fine_loss: 0.6681317090988159
2024/03/15 18:08:34 - patchstitcher - INFO - Epoch: [16/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.80037522315979 - fine_loss: 0.80037522315979
2024/03/15 18:10:20 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.9538666 | 0.9917138 | 0.9972104 | 0.0811061 | 1.3823568 | 0.0351258 | 0.1140013 | 10.5376763 | 0.1382621 | 1.0577048 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 18:12:28 - patchstitcher - INFO - Epoch: [17/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.147787094116211 - fine_loss: 1.147787094116211
2024/03/15 18:14:30 - patchstitcher - INFO - Epoch: [17/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.7300316691398621 - fine_loss: 0.7300316691398621
2024/03/15 18:16:37 - patchstitcher - INFO - Epoch: [17/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7750428318977356 - fine_loss: 0.7750428318977356
2024/03/15 18:18:37 - patchstitcher - INFO - Epoch: [17/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.50600266456604 - fine_loss: 1.50600266456604
2024/03/15 18:22:20 - patchstitcher - INFO - Epoch: [18/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8911293745040894 - fine_loss: 0.8911293745040894
2024/03/15 18:24:18 - patchstitcher - INFO - Epoch: [18/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5605521202087402 - fine_loss: 0.5605521202087402
2024/03/15 18:26:21 - patchstitcher - INFO - Epoch: [18/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6763710975646973 - fine_loss: 1.6763710975646973
2024/03/15 18:28:20 - patchstitcher - INFO - Epoch: [18/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6500707864761353 - fine_loss: 0.6500707864761353
2024/03/15 18:30:14 - patchstitcher - INFO - Evaluation Summary:
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.9562948 | 0.990871 | 0.9974688 | 0.0761721 | 1.3729287 | 0.0331131 | 0.1092103 | 10.1530306 | 0.1366973 | 1.0216396 |
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 18:32:23 - patchstitcher - INFO - Epoch: [19/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5755664110183716 - fine_loss: 0.5755664110183716
2024/03/15 18:34:28 - patchstitcher - INFO - Epoch: [19/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.2044012546539307 - fine_loss: 1.2044012546539307
2024/03/15 18:36:33 - patchstitcher - INFO - Epoch: [19/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.266536831855774 - fine_loss: 1.266536831855774
2024/03/15 18:38:35 - patchstitcher - INFO - Epoch: [19/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7211558818817139 - fine_loss: 0.7211558818817139
2024/03/15 18:42:13 - patchstitcher - INFO - Epoch: [20/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6136915683746338 - fine_loss: 0.6136915683746338
2024/03/15 18:44:12 - patchstitcher - INFO - Epoch: [20/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.4747104048728943 - fine_loss: 0.4747104048728943
2024/03/15 18:46:16 - patchstitcher - INFO - Epoch: [20/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5850560069084167 - fine_loss: 0.5850560069084167
2024/03/15 18:48:21 - patchstitcher - INFO - Epoch: [20/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.37204447388648987 - fine_loss: 0.37204447388648987
2024/03/15 18:50:16 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
| 0.9645657 | 0.9920502 | 0.997654 | 0.0686085 | 1.2732928 | 0.0299144 | 0.1009926 | 9.6382305 | 0.1200509 | 0.993343 |
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
2024/03/15 18:52:27 - patchstitcher - INFO - Epoch: [21/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6047840714454651 - fine_loss: 0.6047840714454651
2024/03/15 18:54:31 - patchstitcher - INFO - Epoch: [21/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5551916360855103 - fine_loss: 0.5551916360855103
2024/03/15 18:56:37 - patchstitcher - INFO - Epoch: [21/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.32560303807258606 - fine_loss: 0.32560303807258606
2024/03/15 18:58:40 - patchstitcher - INFO - Epoch: [21/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.7431879043579102 - fine_loss: 1.7431879043579102
2024/03/15 19:02:20 - patchstitcher - INFO - Epoch: [22/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7936936020851135 - fine_loss: 0.7936936020851135
2024/03/15 19:04:21 - patchstitcher - INFO - Epoch: [22/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6791415214538574 - fine_loss: 0.6791415214538574
2024/03/15 19:06:23 - patchstitcher - INFO - Epoch: [22/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6265323758125305 - fine_loss: 0.6265323758125305
2024/03/15 19:08:25 - patchstitcher - INFO - Epoch: [22/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6945874691009521 - fine_loss: 0.6945874691009521
2024/03/15 19:10:17 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9671118 | 0.9931541 | 0.9976758 | 0.0652155 | 1.2549019 | 0.0282474 | 0.0973396 | 9.2669667 | 0.1172386 | 0.9884787 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 19:12:25 - patchstitcher - INFO - Epoch: [23/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2996392250061035 - fine_loss: 1.2996392250061035
2024/03/15 19:14:26 - patchstitcher - INFO - Epoch: [23/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.674423098564148 - fine_loss: 0.674423098564148
2024/03/15 19:16:29 - patchstitcher - INFO - Epoch: [23/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.0330402851104736 - fine_loss: 2.0330402851104736
2024/03/15 19:18:34 - patchstitcher - INFO - Epoch: [23/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.1583242416381836 - fine_loss: 1.1583242416381836
2024/03/15 19:22:12 - patchstitcher - INFO - Epoch: [24/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8227792978286743 - fine_loss: 0.8227792978286743
2024/03/15 19:24:12 - patchstitcher - INFO - Epoch: [24/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6849284172058105 - fine_loss: 0.6849284172058105
2024/03/15 19:26:14 - patchstitcher - INFO - Epoch: [24/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5954287648200989 - fine_loss: 0.5954287648200989
2024/03/15 19:28:20 - patchstitcher - INFO - Epoch: [24/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.38687634468078613 - fine_loss: 0.38687634468078613
2024/03/15 19:30:07 - patchstitcher - INFO - Evaluation Summary:
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
| a1 | a2 | a3 | abs_rel | rmse | log_10 | rmse_log | silog | sq_rel | see |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
| 0.9687062 | 0.9931654 | 0.9976169 | 0.0635503 | 1.2467909 | 0.0277027 | 0.0958232 | 9.191893 | 0.1155029 | 0.9803023 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
2024/03/15 19:30:07 - patchstitcher - INFO - Saving ckp, but use the inner get_save_dict fuction to get model_dict
2024/03/15 19:30:07 - patchstitcher - INFO - For saving space. Would you like to save base model several times? :>
2024/03/15 19:30:08 - patchstitcher - INFO - save checkpoint_24.pth at ./work_dir/depthanything_vitb_u4k/fine_pretrain
|