File size: 80,167 Bytes
935a102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
2024/03/15 15:30:44 - patchstitcher - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.8.18 | packaged by conda-forge | (default, Oct 10 2023, 15:44:36) [GCC 12.3.0]
    CUDA available: True
    numpy_random_seed: 621
    GPU 0,1,2,3: NVIDIA A100-SXM4-80GB
    CUDA_HOME: /sw/rl9g/cuda/11.8/rl9_binary
    NVCC: Cuda compilation tools, release 11.8, V11.8.89
    GCC: gcc (GCC) 11.3.1 20220421 (Red Hat 11.3.1-2)
    PyTorch: 2.1.2
    PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2022.1-Product Build 20220311 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.1.1 (Git Hash 64f6bcbcbab628e96f33a62c3e975f8535a7bde4)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 11.8
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.7
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, 

    TorchVision: 0.16.2
    OpenCV: 4.8.1
    MMEngine: 0.10.2

Runtime environment:
    cudnn_benchmark: True
    mp_cfg: {'mp_start_method': 'forkserver'}
    dist_cfg: {'backend': 'nccl'}
    seed: 621
    Distributed launcher: pytorch
    Distributed training: True
    GPU number: 4
------------------------------------------------------------

2024/03/15 15:30:44 - patchstitcher - INFO - Config:
collect_input_args = [
    'image_lr',
    'crops_image_hr',
    'depth_gt',
    'crop_depths',
    'bboxs',
    'image_hr',
]
convert_syncbn = True
debug = False
env_cfg = dict(
    cudnn_benchmark=True,
    dist_cfg=dict(backend='nccl'),
    mp_cfg=dict(mp_start_method='forkserver'))
find_unused_parameters = True
general_dataloader = dict(
    batch_size=1,
    dataset=dict(
        dataset_name='', gt_dir=None, rgb_image_dir='', type='ImageDataset'),
    num_workers=2)
launcher = 'pytorch'
log_name = 'fine_pretrain'
max_depth = 80
min_depth = 0.001
model = dict(
    coarse_branch=dict(
        attractor_alpha=1000,
        attractor_gamma=2,
        attractor_kind='mean',
        attractor_type='inv',
        aug=True,
        bin_centers_type='softplus',
        bin_embedding_dim=128,
        clip_grad=0.1,
        dataset='nyu',
        depth_anything=True,
        distributed=True,
        do_resize=False,
        force_keep_ar=True,
        freeze_midas_bn=True,
        gpu='NULL',
        img_size=[
            392,
            518,
        ],
        inverse_midas=False,
        log_images_every=0.1,
        max_depth=80,
        max_temp=50.0,
        max_translation=100,
        memory_efficient=True,
        midas_model_type='vitb',
        min_depth=0.001,
        min_temp=0.0212,
        model='zoedepth',
        n_attractors=[
            16,
            8,
            4,
            1,
        ],
        n_bins=64,
        name='ZoeDepth',
        notes='',
        output_distribution='logbinomial',
        prefetch=False,
        pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
        print_losses=False,
        project='ZoeDepth',
        random_crop=False,
        random_translate=False,
        root='.',
        save_dir='',
        shared_dict='NULL',
        tags='',
        train_midas=True,
        translate_prob=0.2,
        type='DA-ZoeDepth',
        uid='NULL',
        use_amp=False,
        use_pretrained_midas=True,
        use_shared_dict=False,
        validate_every=0.25,
        version_name='v1',
        workers=16),
    fine_branch=dict(
        attractor_alpha=1000,
        attractor_gamma=2,
        attractor_kind='mean',
        attractor_type='inv',
        aug=True,
        bin_centers_type='softplus',
        bin_embedding_dim=128,
        clip_grad=0.1,
        dataset='nyu',
        depth_anything=True,
        distributed=True,
        do_resize=False,
        force_keep_ar=True,
        freeze_midas_bn=True,
        gpu='NULL',
        img_size=[
            392,
            518,
        ],
        inverse_midas=False,
        log_images_every=0.1,
        max_depth=80,
        max_temp=50.0,
        max_translation=100,
        memory_efficient=True,
        midas_model_type='vitb',
        min_depth=0.001,
        min_temp=0.0212,
        model='zoedepth',
        n_attractors=[
            16,
            8,
            4,
            1,
        ],
        n_bins=64,
        name='ZoeDepth',
        notes='',
        output_distribution='logbinomial',
        prefetch=False,
        pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
        print_losses=False,
        project='ZoeDepth',
        random_crop=False,
        random_translate=False,
        root='.',
        save_dir='',
        shared_dict='NULL',
        tags='',
        train_midas=True,
        translate_prob=0.2,
        type='DA-ZoeDepth',
        uid='NULL',
        use_amp=False,
        use_pretrained_midas=True,
        use_shared_dict=False,
        validate_every=0.25,
        version_name='v1',
        workers=16),
    max_depth=80,
    min_depth=0.001,
    patch_process_shape=(
        392,
        518,
    ),
    sigloss=dict(type='SILogLoss'),
    target='fine',
    type='BaselinePretrain')
optim_wrapper = dict(
    clip_grad=dict(max_norm=0.1, norm_type=2, type='norm'),
    optimizer=dict(lr=4e-06, type='AdamW', weight_decay=0.01),
    paramwise_cfg=dict(bypass_duplicate=True, custom_keys=dict()))
param_scheduler = dict(
    base_momentum=0.85,
    cycle_momentum=True,
    div_factor=1,
    final_div_factor=10000,
    max_momentum=0.95,
    pct_start=0.5,
    three_phase=False)
project = 'patchfusion'
tags = [
    'fine',
    'da',
    'vitb',
]
test_in_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='infer',
        split='./data/u4k/splits/test.txt',
        transform_cfg=dict(network_process_size=[
            384,
            512,
        ]),
        type='UnrealStereo4kDataset'),
    num_workers=2)
test_out_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='infer',
        split='./data/u4k/splits/test_out.txt',
        transform_cfg=dict(network_process_size=[
            384,
            512,
        ]),
        type='UnrealStereo4kDataset'),
    num_workers=2)
train_cfg = dict(
    eval_start=0,
    log_interval=100,
    max_epochs=24,
    save_checkpoint_interval=24,
    train_log_img_interval=500,
    val_interval=2,
    val_log_img_interval=50,
    val_type='epoch_base')
train_dataloader = dict(
    batch_size=4,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='train',
        resize_mode='depth-anything',
        split='./data/u4k/splits/train.txt',
        transform_cfg=dict(
            degree=1.0, network_process_size=[
                392,
                518,
            ], random_crop=True),
        type='UnrealStereo4kDataset'),
    num_workers=4)
val_dataloader = dict(
    batch_size=1,
    dataset=dict(
        data_root='./data/u4k',
        max_depth=80,
        min_depth=0.001,
        mode='infer',
        resize_mode='depth-anything',
        split='./data/u4k/splits/val.txt',
        transform_cfg=dict(degree=1.0, network_process_size=[
            392,
            518,
        ]),
        type='UnrealStereo4kDataset'),
    num_workers=2)
work_dir = './work_dir/depthanything_vitb_u4k/fine_pretrain'
zoe_depth_config = dict(
    attractor_alpha=1000,
    attractor_gamma=2,
    attractor_kind='mean',
    attractor_type='inv',
    aug=True,
    bin_centers_type='softplus',
    bin_embedding_dim=128,
    clip_grad=0.1,
    dataset='nyu',
    depth_anything=True,
    distributed=True,
    do_resize=False,
    force_keep_ar=True,
    freeze_midas_bn=True,
    gpu='NULL',
    img_size=[
        392,
        518,
    ],
    inverse_midas=False,
    log_images_every=0.1,
    max_depth=80,
    max_temp=50.0,
    max_translation=100,
    memory_efficient=True,
    midas_model_type='vitb',
    min_depth=0.001,
    min_temp=0.0212,
    model='zoedepth',
    n_attractors=[
        16,
        8,
        4,
        1,
    ],
    n_bins=64,
    name='ZoeDepth',
    notes='',
    output_distribution='logbinomial',
    prefetch=False,
    pretrained_resource='local::./work_dir/DepthAnything_vitb.pt',
    print_losses=False,
    project='ZoeDepth',
    random_crop=False,
    random_translate=False,
    root='.',
    save_dir='',
    shared_dict='NULL',
    tags='',
    train_midas=True,
    translate_prob=0.2,
    type='DA-ZoeDepth',
    uid='NULL',
    use_amp=False,
    use_pretrained_midas=True,
    use_shared_dict=False,
    validate_every=0.25,
    version_name='v1',
    workers=16)

2024/03/15 15:30:45 - patchstitcher - INFO - Loading deepnet from local::./work_dir/DepthAnything_vitb.pt
2024/03/15 15:30:45 - patchstitcher - INFO - Current zoedepth.core.prep.resizer is <class 'torch.nn.modules.linear.Identity'>
2024/03/15 15:30:45 - patchstitcher - INFO - DistributedDataParallel(
  (module): BaselinePretrain(
    (fine_branch): ZoeDepth(
      (core): DepthAnythingCore(
        (core): DPT_DINOv2(
          (pretrained): DinoVisionTransformer(
            (patch_embed): PatchEmbed(
              (proj): Conv2d(3, 768, kernel_size=(14, 14), stride=(14, 14))
              (norm): Identity()
            )
            (blocks): ModuleList(
              (0-11): 12 x NestedTensorBlock(
                (norm1): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
                (attn): MemEffAttention(
                  (qkv): Linear(in_features=768, out_features=2304, bias=True)
                  (attn_drop): Dropout(p=0.0, inplace=False)
                  (proj): Linear(in_features=768, out_features=768, bias=True)
                  (proj_drop): Dropout(p=0.0, inplace=False)
                )
                (ls1): LayerScale()
                (drop_path1): Identity()
                (norm2): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
                (mlp): Mlp(
                  (fc1): Linear(in_features=768, out_features=3072, bias=True)
                  (act): GELU(approximate='none')
                  (fc2): Linear(in_features=3072, out_features=768, bias=True)
                  (drop): Dropout(p=0.0, inplace=False)
                )
                (ls2): LayerScale()
                (drop_path2): Identity()
              )
            )
            (norm): LayerNorm((768,), eps=1e-06, elementwise_affine=True)
            (head): Identity()
          )
          (depth_head): DPTHead(
            (projects): ModuleList(
              (0): Conv2d(768, 96, kernel_size=(1, 1), stride=(1, 1))
              (1): Conv2d(768, 192, kernel_size=(1, 1), stride=(1, 1))
              (2): Conv2d(768, 384, kernel_size=(1, 1), stride=(1, 1))
              (3): Conv2d(768, 768, kernel_size=(1, 1), stride=(1, 1))
            )
            (resize_layers): ModuleList(
              (0): ConvTranspose2d(96, 96, kernel_size=(4, 4), stride=(4, 4))
              (1): ConvTranspose2d(192, 192, kernel_size=(2, 2), stride=(2, 2))
              (2): Identity()
              (3): Conv2d(768, 768, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
            )
            (scratch): Module(
              (layer1_rn): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (layer2_rn): Conv2d(192, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (layer3_rn): Conv2d(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (layer4_rn): Conv2d(768, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (refinenet1): FeatureFusionBlock(
                (out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (refinenet2): FeatureFusionBlock(
                (out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (refinenet3): FeatureFusionBlock(
                (out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (refinenet4): FeatureFusionBlock(
                (out_conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
                (resConfUnit1): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (resConfUnit2): ResidualConvUnit(
                  (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (activation): ReLU()
                  (skip_add): FloatFunctional(
                    (activation_post_process): Identity()
                  )
                )
                (skip_add): FloatFunctional(
                  (activation_post_process): Identity()
                )
              )
              (output_conv1): Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
              (output_conv2): Sequential(
                (0): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                (1): ReLU(inplace=True)
                (2): Conv2d(32, 1, kernel_size=(1, 1), stride=(1, 1))
                (3): ReLU(inplace=True)
                (4): Identity()
              )
            )
          )
        )
      )
      (conv2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
      (seed_bin_regressor): SeedBinRegressorUnnormed(
        (_net): Sequential(
          (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1))
          (1): ReLU(inplace=True)
          (2): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
          (3): Softplus(beta=1, threshold=20)
        )
      )
      (seed_projector): Projector(
        (_net): Sequential(
          (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
          (1): ReLU(inplace=True)
          (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
        )
      )
      (projectors): ModuleList(
        (0-3): 4 x Projector(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
          )
        )
      )
      (attractors): ModuleList(
        (0): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
        (1): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
        (2): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
        (3): AttractorLayerUnnormed(
          (_net): Sequential(
            (0): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1))
            (1): ReLU(inplace=True)
            (2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
            (3): Softplus(beta=1, threshold=20)
          )
        )
      )
      (conditional_log_binomial): ConditionalLogBinomial(
        (log_binomial_transform): LogBinomial()
        (mlp): Sequential(
          (0): Conv2d(161, 80, kernel_size=(1, 1), stride=(1, 1))
          (1): GELU(approximate='none')
          (2): Conv2d(80, 4, kernel_size=(1, 1), stride=(1, 1))
          (3): Softplus(beta=1, threshold=20)
        )
      )
    )
    (sigloss): SILogLoss()
  )
)
2024/03/15 15:30:51 - patchstitcher - INFO - successfully init trainer
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.cls_token
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.pos_embed
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.mask_token
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.patch_embed.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.0.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.1.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.2.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.3.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.4.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.5.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.6.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.7.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.8.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.9.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.10.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.qkv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.attn.proj.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls1.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.norm2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.mlp.fc2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.blocks.11.ls2.gamma
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.pretrained.norm.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.projects.3.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.resize_layers.3.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer1_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer2_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer3_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.layer4_rn.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet1.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet2.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet3.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.out_conv.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit1.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.refinenet4.resConfUnit2.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv1.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.core.core.depth_head.scratch.output_conv2.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conv2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conv2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_bin_regressor._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.seed_projector._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.0._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.1._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.2._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.projectors.3._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.0._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.1._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.2._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.attractors.3._net.2.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.0.bias
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.weight
2024/03/15 15:30:51 - patchstitcher - INFO - training param: module.fine_branch.conditional_log_binomial.mlp.2.bias
2024/03/15 15:33:25 - patchstitcher - INFO - Epoch: [01/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.288588523864746 - fine_loss: 2.288588523864746
2024/03/15 15:35:13 - patchstitcher - INFO - Epoch: [01/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.749260425567627 - fine_loss: 1.749260425567627
2024/03/15 15:36:58 - patchstitcher - INFO - Epoch: [01/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.603142499923706 - fine_loss: 2.603142499923706
2024/03/15 15:38:59 - patchstitcher - INFO - Epoch: [01/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 3.0235860347747803 - fine_loss: 3.0235860347747803
2024/03/15 15:42:38 - patchstitcher - INFO - Epoch: [02/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 2.2628891468048096 - fine_loss: 2.2628891468048096
2024/03/15 15:44:44 - patchstitcher - INFO - Epoch: [02/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 2.2125635147094727 - fine_loss: 2.2125635147094727
2024/03/15 15:46:44 - patchstitcher - INFO - Epoch: [02/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.884977102279663 - fine_loss: 1.884977102279663
2024/03/15 15:48:46 - patchstitcher - INFO - Epoch: [02/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 3.667808771133423 - fine_loss: 3.667808771133423
2024/03/15 15:50:43 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |   rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| 0.7653929 | 0.9569647 | 0.9891034 | 0.1631364 | 2.063872 | 0.0675193 | 0.2015772 | 17.5721867 | 0.3284417 | 1.5396647 |
+-----------+-----------+-----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 15:52:52 - patchstitcher - INFO - Epoch: [03/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.9002115726470947 - fine_loss: 1.9002115726470947
2024/03/15 15:54:51 - patchstitcher - INFO - Epoch: [03/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.533200979232788 - fine_loss: 1.533200979232788
2024/03/15 15:56:53 - patchstitcher - INFO - Epoch: [03/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3708069324493408 - fine_loss: 1.3708069324493408
2024/03/15 15:58:56 - patchstitcher - INFO - Epoch: [03/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.3536834716796875 - fine_loss: 1.3536834716796875
2024/03/15 16:02:35 - patchstitcher - INFO - Epoch: [04/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.4067535400390625 - fine_loss: 1.4067535400390625
2024/03/15 16:04:38 - patchstitcher - INFO - Epoch: [04/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.571197509765625 - fine_loss: 1.571197509765625
2024/03/15 16:06:40 - patchstitcher - INFO - Epoch: [04/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.9749035835266113 - fine_loss: 2.9749035835266113
2024/03/15 16:08:48 - patchstitcher - INFO - Epoch: [04/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.893333911895752 - fine_loss: 0.893333911895752
2024/03/15 16:10:40 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|     a1    |     a2    |    a3    |  abs_rel  |    rmse   |   log_10  | rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
| 0.8439181 | 0.9733375 | 0.992747 | 0.1316369 | 1.8230734 | 0.0558847 | 0.171333 | 15.4284363 | 0.2575101 | 1.3799866 |
+-----------+-----------+----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
2024/03/15 16:12:51 - patchstitcher - INFO - Epoch: [05/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5204694271087646 - fine_loss: 1.5204694271087646
2024/03/15 16:14:53 - patchstitcher - INFO - Epoch: [05/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.0538222789764404 - fine_loss: 1.0538222789764404
2024/03/15 16:17:00 - patchstitcher - INFO - Epoch: [05/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.246050477027893 - fine_loss: 1.246050477027893
2024/03/15 16:19:04 - patchstitcher - INFO - Epoch: [05/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4139764308929443 - fine_loss: 1.4139764308929443
2024/03/15 16:22:40 - patchstitcher - INFO - Epoch: [06/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5990095138549805 - fine_loss: 1.5990095138549805
2024/03/15 16:24:45 - patchstitcher - INFO - Epoch: [06/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4719877243041992 - fine_loss: 1.4719877243041992
2024/03/15 16:26:49 - patchstitcher - INFO - Epoch: [06/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.998321533203125 - fine_loss: 0.998321533203125
2024/03/15 16:28:52 - patchstitcher - INFO - Epoch: [06/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.2637615203857422 - fine_loss: 1.2637615203857422
2024/03/15 16:30:46 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.8831826 | 0.9846013 | 0.9953048 | 0.1145366 | 1.6448599 | 0.0488564 | 0.1510406 | 14.0402038 | 0.2199031 | 1.3085128 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 16:32:53 - patchstitcher - INFO - Epoch: [07/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.65132737159729 - fine_loss: 1.65132737159729
2024/03/15 16:34:56 - patchstitcher - INFO - Epoch: [07/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4322144985198975 - fine_loss: 1.4322144985198975
2024/03/15 16:37:04 - patchstitcher - INFO - Epoch: [07/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.034339427947998 - fine_loss: 1.034339427947998
2024/03/15 16:39:08 - patchstitcher - INFO - Epoch: [07/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.0732086896896362 - fine_loss: 1.0732086896896362
2024/03/15 16:42:43 - patchstitcher - INFO - Epoch: [08/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.3489086627960205 - fine_loss: 1.3489086627960205
2024/03/15 16:44:47 - patchstitcher - INFO - Epoch: [08/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.4356486797332764 - fine_loss: 1.4356486797332764
2024/03/15 16:46:50 - patchstitcher - INFO - Epoch: [08/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6865524649620056 - fine_loss: 0.6865524649620056
2024/03/15 16:48:50 - patchstitcher - INFO - Epoch: [08/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.4590085744857788 - fine_loss: 1.4590085744857788
2024/03/15 16:50:41 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  | rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
| 0.8921932 | 0.9874671 | 0.9972081 | 0.1083586 | 1.6257898 | 0.0457595 | 0.142043 | 12.7745355 | 0.2076856 | 1.2743567 |
+-----------+-----------+-----------+-----------+-----------+-----------+----------+------------+-----------+-----------+
2024/03/15 16:52:44 - patchstitcher - INFO - Epoch: [09/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.008254885673523 - fine_loss: 1.008254885673523
2024/03/15 16:54:54 - patchstitcher - INFO - Epoch: [09/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.8210620880126953 - fine_loss: 0.8210620880126953
2024/03/15 16:56:55 - patchstitcher - INFO - Epoch: [09/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.8681334257125854 - fine_loss: 1.8681334257125854
2024/03/15 16:58:59 - patchstitcher - INFO - Epoch: [09/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9568914771080017 - fine_loss: 0.9568914771080017
2024/03/15 17:02:34 - patchstitcher - INFO - Epoch: [10/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.5452194213867188 - fine_loss: 1.5452194213867188
2024/03/15 17:04:40 - patchstitcher - INFO - Epoch: [10/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9237810373306274 - fine_loss: 0.9237810373306274
2024/03/15 17:06:43 - patchstitcher - INFO - Epoch: [10/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.4192367792129517 - fine_loss: 1.4192367792129517
2024/03/15 17:08:47 - patchstitcher - INFO - Epoch: [10/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.1616711616516113 - fine_loss: 1.1616711616516113
2024/03/15 17:10:40 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
|     a1    |     a2    |    a3    |  abs_rel  |   rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
| 0.9095374 | 0.9878494 | 0.996491 | 0.1000458 | 1.529536 | 0.0445519 | 0.1377915 | 12.2980782 | 0.1741764 | 1.1720957 |
+-----------+-----------+----------+-----------+----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 17:12:48 - patchstitcher - INFO - Epoch: [11/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2545241117477417 - fine_loss: 1.2545241117477417
2024/03/15 17:14:52 - patchstitcher - INFO - Epoch: [11/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9477699398994446 - fine_loss: 0.9477699398994446
2024/03/15 17:16:59 - patchstitcher - INFO - Epoch: [11/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.3806159496307373 - fine_loss: 1.3806159496307373
2024/03/15 17:19:02 - patchstitcher - INFO - Epoch: [11/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.12031888961792 - fine_loss: 1.12031888961792
2024/03/15 17:22:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.9633316993713379 - fine_loss: 0.9633316993713379
2024/03/15 17:24:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9473192691802979 - fine_loss: 0.9473192691802979
2024/03/15 17:26:38 - patchstitcher - INFO - Epoch: [12/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.8891739845275879 - fine_loss: 0.8891739845275879
2024/03/15 17:28:46 - patchstitcher - INFO - Epoch: [12/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.9305822849273682 - fine_loss: 0.9305822849273682
2024/03/15 17:30:43 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9285209 | 0.9902661 | 0.9963124 | 0.0922186 | 1.4988106 | 0.0394503 | 0.1265562 | 11.929424 | 0.1792194 | 1.2142439 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 17:32:52 - patchstitcher - INFO - Epoch: [13/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.26497220993042 - fine_loss: 1.26497220993042
2024/03/15 17:35:00 - patchstitcher - INFO - Epoch: [13/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.580217957496643 - fine_loss: 1.580217957496643
2024/03/15 17:36:59 - patchstitcher - INFO - Epoch: [13/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6395942568778992 - fine_loss: 0.6395942568778992
2024/03/15 17:39:02 - patchstitcher - INFO - Epoch: [13/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.32594698667526245 - fine_loss: 0.32594698667526245
2024/03/15 17:42:34 - patchstitcher - INFO - Epoch: [14/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.924031674861908 - fine_loss: 0.924031674861908
2024/03/15 17:44:36 - patchstitcher - INFO - Epoch: [14/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.985018253326416 - fine_loss: 0.985018253326416
2024/03/15 17:46:38 - patchstitcher - INFO - Epoch: [14/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.0442320108413696 - fine_loss: 1.0442320108413696
2024/03/15 17:48:43 - patchstitcher - INFO - Epoch: [14/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.5068702101707458 - fine_loss: 0.5068702101707458
2024/03/15 17:50:33 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.9381619 | 0.9895476 | 0.9972216 | 0.0913334 | 1.5578288 | 0.0391697 | 0.1243245 | 11.1463653 | 0.1706981 | 1.1217431 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 17:52:46 - patchstitcher - INFO - Epoch: [15/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.1108862161636353 - fine_loss: 1.1108862161636353
2024/03/15 17:54:52 - patchstitcher - INFO - Epoch: [15/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9237959980964661 - fine_loss: 0.9237959980964661
2024/03/15 17:56:56 - patchstitcher - INFO - Epoch: [15/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.5644421577453613 - fine_loss: 1.5644421577453613
2024/03/15 17:58:54 - patchstitcher - INFO - Epoch: [15/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7902756929397583 - fine_loss: 0.7902756929397583
2024/03/15 18:02:26 - patchstitcher - INFO - Epoch: [16/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.966326117515564 - fine_loss: 0.966326117515564
2024/03/15 18:04:32 - patchstitcher - INFO - Epoch: [16/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.9776898622512817 - fine_loss: 0.9776898622512817
2024/03/15 18:06:33 - patchstitcher - INFO - Epoch: [16/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6681317090988159 - fine_loss: 0.6681317090988159
2024/03/15 18:08:34 - patchstitcher - INFO - Epoch: [16/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.80037522315979 - fine_loss: 0.80037522315979
2024/03/15 18:10:20 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.9538666 | 0.9917138 | 0.9972104 | 0.0811061 | 1.3823568 | 0.0351258 | 0.1140013 | 10.5376763 | 0.1382621 | 1.0577048 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 18:12:28 - patchstitcher - INFO - Epoch: [17/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.147787094116211 - fine_loss: 1.147787094116211
2024/03/15 18:14:30 - patchstitcher - INFO - Epoch: [17/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.7300316691398621 - fine_loss: 0.7300316691398621
2024/03/15 18:16:37 - patchstitcher - INFO - Epoch: [17/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.7750428318977356 - fine_loss: 0.7750428318977356
2024/03/15 18:18:37 - patchstitcher - INFO - Epoch: [17/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.50600266456604 - fine_loss: 1.50600266456604
2024/03/15 18:22:20 - patchstitcher - INFO - Epoch: [18/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8911293745040894 - fine_loss: 0.8911293745040894
2024/03/15 18:24:18 - patchstitcher - INFO - Epoch: [18/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5605521202087402 - fine_loss: 0.5605521202087402
2024/03/15 18:26:21 - patchstitcher - INFO - Epoch: [18/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.6763710975646973 - fine_loss: 1.6763710975646973
2024/03/15 18:28:20 - patchstitcher - INFO - Epoch: [18/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6500707864761353 - fine_loss: 0.6500707864761353
2024/03/15 18:30:14 - patchstitcher - INFO - Evaluation Summary: 
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
|     a1    |    a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog    |   sq_rel  |    see    |
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
| 0.9562948 | 0.990871 | 0.9974688 | 0.0761721 | 1.3729287 | 0.0331131 | 0.1092103 | 10.1530306 | 0.1366973 | 1.0216396 |
+-----------+----------+-----------+-----------+-----------+-----------+-----------+------------+-----------+-----------+
2024/03/15 18:32:23 - patchstitcher - INFO - Epoch: [19/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.5755664110183716 - fine_loss: 0.5755664110183716
2024/03/15 18:34:28 - patchstitcher - INFO - Epoch: [19/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 1.2044012546539307 - fine_loss: 1.2044012546539307
2024/03/15 18:36:33 - patchstitcher - INFO - Epoch: [19/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 1.266536831855774 - fine_loss: 1.266536831855774
2024/03/15 18:38:35 - patchstitcher - INFO - Epoch: [19/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.7211558818817139 - fine_loss: 0.7211558818817139
2024/03/15 18:42:13 - patchstitcher - INFO - Epoch: [20/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6136915683746338 - fine_loss: 0.6136915683746338
2024/03/15 18:44:12 - patchstitcher - INFO - Epoch: [20/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.4747104048728943 - fine_loss: 0.4747104048728943
2024/03/15 18:46:16 - patchstitcher - INFO - Epoch: [20/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5850560069084167 - fine_loss: 0.5850560069084167
2024/03/15 18:48:21 - patchstitcher - INFO - Epoch: [20/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.37204447388648987 - fine_loss: 0.37204447388648987
2024/03/15 18:50:16 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
|     a1    |     a2    |    a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |   see    |
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
| 0.9645657 | 0.9920502 | 0.997654 | 0.0686085 | 1.2732928 | 0.0299144 | 0.1009926 | 9.6382305 | 0.1200509 | 0.993343 |
+-----------+-----------+----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+
2024/03/15 18:52:27 - patchstitcher - INFO - Epoch: [21/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.6047840714454651 - fine_loss: 0.6047840714454651
2024/03/15 18:54:31 - patchstitcher - INFO - Epoch: [21/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.5551916360855103 - fine_loss: 0.5551916360855103
2024/03/15 18:56:37 - patchstitcher - INFO - Epoch: [21/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.32560303807258606 - fine_loss: 0.32560303807258606
2024/03/15 18:58:40 - patchstitcher - INFO - Epoch: [21/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.7431879043579102 - fine_loss: 1.7431879043579102
2024/03/15 19:02:20 - patchstitcher - INFO - Epoch: [22/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.7936936020851135 - fine_loss: 0.7936936020851135
2024/03/15 19:04:21 - patchstitcher - INFO - Epoch: [22/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6791415214538574 - fine_loss: 0.6791415214538574
2024/03/15 19:06:23 - patchstitcher - INFO - Epoch: [22/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.6265323758125305 - fine_loss: 0.6265323758125305
2024/03/15 19:08:25 - patchstitcher - INFO - Epoch: [22/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.6945874691009521 - fine_loss: 0.6945874691009521
2024/03/15 19:10:17 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |   silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
| 0.9671118 | 0.9931541 | 0.9976758 | 0.0652155 | 1.2549019 | 0.0282474 | 0.0973396 | 9.2669667 | 0.1172386 | 0.9884787 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
2024/03/15 19:12:25 - patchstitcher - INFO - Epoch: [23/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 1.2996392250061035 - fine_loss: 1.2996392250061035
2024/03/15 19:14:26 - patchstitcher - INFO - Epoch: [23/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.674423098564148 - fine_loss: 0.674423098564148
2024/03/15 19:16:29 - patchstitcher - INFO - Epoch: [23/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 2.0330402851104736 - fine_loss: 2.0330402851104736
2024/03/15 19:18:34 - patchstitcher - INFO - Epoch: [23/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 1.1583242416381836 - fine_loss: 1.1583242416381836
2024/03/15 19:22:12 - patchstitcher - INFO - Epoch: [24/24] - Step: [00100/00475] - Time: [1/1] - Total Loss: 0.8227792978286743 - fine_loss: 0.8227792978286743
2024/03/15 19:24:12 - patchstitcher - INFO - Epoch: [24/24] - Step: [00200/00475] - Time: [1/1] - Total Loss: 0.6849284172058105 - fine_loss: 0.6849284172058105
2024/03/15 19:26:14 - patchstitcher - INFO - Epoch: [24/24] - Step: [00300/00475] - Time: [1/1] - Total Loss: 0.5954287648200989 - fine_loss: 0.5954287648200989
2024/03/15 19:28:20 - patchstitcher - INFO - Epoch: [24/24] - Step: [00400/00475] - Time: [1/1] - Total Loss: 0.38687634468078613 - fine_loss: 0.38687634468078613
2024/03/15 19:30:07 - patchstitcher - INFO - Evaluation Summary: 
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
|     a1    |     a2    |     a3    |  abs_rel  |    rmse   |   log_10  |  rmse_log |  silog   |   sq_rel  |    see    |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
| 0.9687062 | 0.9931654 | 0.9976169 | 0.0635503 | 1.2467909 | 0.0277027 | 0.0958232 | 9.191893 | 0.1155029 | 0.9803023 |
+-----------+-----------+-----------+-----------+-----------+-----------+-----------+----------+-----------+-----------+
2024/03/15 19:30:07 - patchstitcher - INFO - Saving ckp, but use the inner get_save_dict fuction to get model_dict
2024/03/15 19:30:07 - patchstitcher - INFO - For saving space. Would you like to save base model several times? :>
2024/03/15 19:30:08 - patchstitcher - INFO - save checkpoint_24.pth at ./work_dir/depthanything_vitb_u4k/fine_pretrain