File size: 13,173 Bytes
3c849be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
ImageFold function.

Mostly copy-paste from torchvision references
"""
import os
import os.path
from typing import Any, Callable, Dict, List, Optional, Tuple, cast

from PIL import Image
from torchvision.datasets.vision import VisionDataset


def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool:
    """Checks if a file is an allowed extension.

    Args:
        filename (string): path to a file
        extensions (tuple of strings): extensions to consider (lowercase)

    Returns:
        bool: True if the filename ends with one of given extensions
    """
    return filename.lower().endswith(extensions)


def is_image_file(filename: str) -> bool:
    """Checks if a file is an allowed image extension.

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    return has_file_allowed_extension(filename, IMG_EXTENSIONS)


def find_classes(directory: str, class_num: int) -> Tuple[List[str], Dict[str, int]]:
    """Finds the class folders in a dataset.

    See :class:`DatasetFolder` for details.
    """
    classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
    if not classes:
        raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")
    classes = classes[:class_num]
    class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
    return classes, class_to_idx


def make_dataset(
    directory: str,
    class_to_idx: Optional[Dict[str, int]] = None,
    extensions: Optional[Tuple[str, ...]] = None,
    is_valid_file: Optional[Callable[[str], bool]] = None,
    class_num=10,
) -> List[Tuple[str, int]]:
    """Generates a list of samples of a form (path_to_sample, class).

    See :class:`DatasetFolder` for details.

    Note: The class_to_idx parameter is here optional and will use the logic of the ``find_classes`` function
    by default.
    """
    directory = os.path.expanduser(directory)

    if class_to_idx is None:
        _, class_to_idx = find_classes(directory, class_num)
    elif not class_to_idx:
        raise ValueError(
            "'class_to_index' must have at least one entry to collect any samples."
        )

    both_none = extensions is None and is_valid_file is None
    both_something = extensions is not None and is_valid_file is not None
    if both_none or both_something:
        raise ValueError(
            "Both extensions and is_valid_file cannot be None or not None at the same time"
        )

    if extensions is not None:

        def is_valid_file(x: str) -> bool:
            return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions))

    is_valid_file = cast(Callable[[str], bool], is_valid_file)

    instances = []
    available_classes = set()
    for target_class in sorted(class_to_idx.keys()):
        class_index = class_to_idx[target_class]
        target_dir = os.path.join(directory, target_class)
        if not os.path.isdir(target_dir):
            continue
        for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
            for fname in sorted(fnames):
                path = os.path.join(root, fname)
                if is_valid_file(path):
                    item = path, class_index
                    instances.append(item)

                    if target_class not in available_classes:
                        available_classes.add(target_class)

    empty_classes = set(class_to_idx.keys()) - available_classes
    if empty_classes:
        msg = (
            f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "
        )
        if extensions is not None:
            msg += f"Supported extensions are: {', '.join(extensions)}"
        raise FileNotFoundError(msg)

    return instances


class DatasetFolder(VisionDataset):
    """A generic data loader.

    This default directory structure can be customized by overriding the
    :meth:`find_classes` method.

    Args:
        root (string): Root directory path.
        loader (callable): A function to load a sample given its path.
        extensions (tuple[string]): A list of allowed extensions.
            both extensions and is_valid_file should not be passed.
        transform (callable, optional): A function/transform that takes in
            a sample and returns a transformed version.
            E.g, ``transforms.RandomCrop`` for images.
        target_transform (callable, optional): A function/transform that takes
            in the target and transforms it.
        is_valid_file (callable, optional): A function that takes path of a file
            and check if the file is a valid file (used to check of corrupt files)
            both extensions and is_valid_file should not be passed.
        class_num: how many classes will be loaded
     Attributes:
        classes (list): List of the class names sorted alphabetically.
        class_to_idx (dict): Dict with items (class_name, class_index).
        samples (list): List of (sample path, class_index) tuples
        targets (list): The class_index value for each image in the dataset
    """

    def __init__(
        self,
        root: str,
        loader: Callable[[str], Any],
        extensions: Optional[Tuple[str, ...]] = None,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        is_valid_file: Optional[Callable[[str], bool]] = None,
        class_num=10,
    ) -> None:
        super(DatasetFolder, self).__init__(
            root, transform=transform, target_transform=target_transform
        )
        classes, class_to_idx = self.find_classes(self.root, class_num=class_num)
        samples = self.make_dataset(
            self.root, class_to_idx, extensions, is_valid_file, class_num=class_num
        )

        self.loader = loader
        self.extensions = extensions

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
        self.targets = [s[1] for s in samples]

    @staticmethod
    def make_dataset(
        directory: str,
        class_to_idx: Dict[str, int],
        extensions: Optional[Tuple[str, ...]] = None,
        is_valid_file: Optional[Callable[[str], bool]] = None,
        class_num=10,
    ) -> List[Tuple[str, int]]:
        """Generates a list of samples of a form (path_to_sample, class).

        This can be overridden to e.g. read files from a compressed zip file instead of from the disk.

        Args:
            directory (str): root dataset directory, corresponding to ``self.root``.
            class_to_idx (Dict[str, int]): Dictionary mapping class name to class index.
            extensions (optional): A list of allowed extensions.
                Either extensions or is_valid_file should be passed. Defaults to None.
            is_valid_file (optional): A function that takes path of a file
                and checks if the file is a valid file
                (used to check of corrupt files) both extensions and
                is_valid_file should not be passed. Defaults to None.
            class_num: how many classes will be loaded
        Raises:
            ValueError: In case ``class_to_idx`` is empty.
            ValueError: In case ``extensions`` and ``is_valid_file`` are None or both are not None.
            FileNotFoundError: In case no valid file was found for any class.

        Returns:
            List[Tuple[str, int]]: samples of a form (path_to_sample, class)
        """
        if class_to_idx is None:
            # prevent potential bug since make_dataset() would use the class_to_idx logic of the
            # find_classes() function, instead of using that of the find_classes() method, which
            # is potentially overridden and thus could have a different logic.
            raise ValueError("The class_to_idx parameter cannot be None.")
        return make_dataset(
            directory,
            class_to_idx,
            extensions=extensions,
            is_valid_file=is_valid_file,
            class_num=class_num,
        )

    def find_classes(
        self, directory: str, class_num: int
    ) -> Tuple[List[str], Dict[str, int]]:
        """Find the class folders in a dataset structured as follows::

            directory/
            β”œβ”€β”€ class_x
            β”‚   β”œβ”€β”€ xxx.ext
            β”‚   β”œβ”€β”€ xxy.ext
            β”‚   └── ...
            β”‚       └── xxz.ext
            └── class_y
                β”œβ”€β”€ 123.ext
                β”œβ”€β”€ nsdf3.ext
                └── ...
                └── asd932_.ext

        This method can be overridden to only consider
        a subset of classes, or to adapt to a different dataset directory structure.

        Args:
            directory(str): Root directory path, corresponding to ``self.root``

        Raises:
            FileNotFoundError: If ``dir`` has no class folders.

        Returns:
            (Tuple[List[str], Dict[str, int]]): List of all classes and dictionary mapping each class to an index.
        """
        return find_classes(directory, class_num=class_num)

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path, target = self.samples[index]
        sample = self.loader(path)
        if self.transform is not None:
            sample = self.transform(sample)
        # if self.target_transform is not None:
        #     target = self.target_transform(target)

        return sample  # , target

    def __len__(self) -> int:
        return len(self.samples)


IMG_EXTENSIONS = (
    ".jpg",
    ".jpeg",
    ".png",
    ".ppm",
    ".bmp",
    ".pgm",
    ".tif",
    ".tiff",
    ".webp",
)


def pil_loader(path: str) -> Image.Image:
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, "rb") as f:
        img = Image.open(f)
        return img.convert("RGB")


# TODO: specify the return type
def accimage_loader(path: str) -> Any:
    import accimage

    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)


def default_loader(path: str) -> Any:
    from torchvision import get_image_backend

    if get_image_backend() == "accimage":
        return accimage_loader(path)
    else:
        return pil_loader(path)


class ImageFolder(DatasetFolder):
    """A generic data loader where the images are arranged in this way by default: ::

        root/dog/xxx.png
        root/dog/xxy.png
        root/dog/[...]/xxz.png

        root/cat/123.png
        root/cat/nsdf3.png
        root/cat/[...]/asd932_.png

    This class inherits from :class:`~torchvision.datasets.DatasetFolder` so
    the same methods can be overridden to customize the dataset.

    Args:
        root (string): Root directory path.
        transform (callable, optional): A function/transform that  takes in an PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        loader (callable, optional): A function to load an image given its path.
        is_valid_file (callable, optional): A function that takes path of an Image file
            and check if the file is a valid file (used to check of corrupt files)
        class_num: how many classes will be loaded
     Attributes:
        classes (list): List of the class names sorted alphabetically.
        class_to_idx (dict): Dict with items (class_name, class_index).
        imgs (list): List of (image path, class_index) tuples
    """

    def __init__(
        self,
        root: str,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        loader: Callable[[str], Any] = default_loader,
        is_valid_file: Optional[Callable[[str], bool]] = None,
        class_num=10,
    ):
        super(ImageFolder, self).__init__(
            root,
            loader,
            IMG_EXTENSIONS if is_valid_file is None else None,
            transform=transform,
            target_transform=target_transform,
            is_valid_file=is_valid_file,
            class_num=class_num,
        )
        self.imgs = self.samples