File size: 6,611 Bytes
3c849be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
implment some functions for optimizers
"""
import numpy as np
import torch
import utils
def clip_gradients(model, clip):
"""
clip gradient if gradient norm > clip
"""
norms = []
for name, p in model.named_parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
norms.append(param_norm.item())
clip_coef = clip / (param_norm + 1e-6)
if clip_coef < 1:
p.grad.data.mul_(clip_coef)
return norms
def cancel_gradients_last_layer(epoch, model, freeze_last_layer):
"""
cancle gradient if epoch > freeze_last_layer
"""
if epoch >= freeze_last_layer:
return
for n, p in model.named_parameters():
if "last_layer" in n:
p.grad = None
def cosine_scheduler(
base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0
):
"""
start_warmup_value to base_value in the first warmup_epochs epochs;
then cosine scheduling base_value to final_value in the remaining epochs-warmup_epochs
"""
warmup_schedule = np.array([])
warmup_iters = warmup_epochs * niter_per_ep
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = final_value + 0.5 * (base_value - final_value) * (
1 + np.cos(np.pi * iters / len(iters))
)
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def get_params_groups(model):
"""
divide the parameters into several groups, see below
"""
regularized = []
not_regularized = []
patch_embed = []
patch_embed_not_regularized = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue
# we do not regularize biases nor Norm parameters
if name.endswith(".bias") or len(param.shape) == 1:
if "patch_embed" in name:
patch_embed_not_regularized.append(param)
else:
not_regularized.append(param)
elif "patch_embed" in name:
patch_embed.append(param)
else:
regularized.append(param)
return [
{"name": "normal_params", "params": regularized},
{"name": "patch_embed", "params": patch_embed},
{
"name": "no_wd",
"params": not_regularized,
"apply_wd": False,
"weight_decay": 0.0,
},
{
"name": "patch_embed_no_wd",
"params": patch_embed_not_regularized,
"apply_wd": False,
"weight_decay": 0.0,
},
]
class LARS(torch.optim.Optimizer):
"""
Almost copy-paste from https://github.com/facebookresearch/barlowtwins/blob/main/main.py
"""
def __init__(
self,
params,
lr=0,
weight_decay=0,
momentum=0.9,
eta=0.001,
weight_decay_filter=None,
lars_adaptation_filter=None,
):
defaults = dict(
lr=lr,
weight_decay=weight_decay,
momentum=momentum,
eta=eta,
weight_decay_filter=weight_decay_filter,
lars_adaptation_filter=lars_adaptation_filter,
)
super().__init__(params, defaults)
@torch.no_grad()
def step(self):
for g in self.param_groups:
for p in g["params"]:
dp = p.grad
if dp is None:
continue
if p.ndim != 1:
dp = dp.add(p, alpha=g["weight_decay"])
if p.ndim != 1:
param_norm = torch.norm(p)
update_norm = torch.norm(dp)
one = torch.ones_like(param_norm)
q = torch.where(
param_norm > 0.0,
torch.where(
update_norm > 0, (g["eta"] * param_norm / update_norm), one
),
one,
)
dp = dp.mul(q)
param_state = self.state[p]
if "mu" not in param_state:
param_state["mu"] = torch.zeros_like(p)
mu = param_state["mu"]
mu.mul_(g["momentum"]).add_(dp)
p.add_(mu, alpha=-g["lr"])
def get_optimizer(student, len_dataloader, args):
"""
build an optimizer for training
"""
# ============ preparing optimizer ... ============
params_groups = get_params_groups(student)
if args.optimizer == "adamw":
optimizer = torch.optim.AdamW(params_groups) # to use with ViTs
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(
params_groups, lr=0, momentum=0.9
) # lr is set by scheduler
elif args.optimizer == "lars":
optimizer = LARS(params_groups) # to use with convnet and large batches
# for mixed precision training
fp16_scaler = None
if args.use_fp16:
fp16_scaler = torch.cuda.amp.GradScaler()
# ============ init schedulers ... ============
lr_schedule = cosine_scheduler(
args.lr
* (args.batch_size_per_gpu * utils.get_world_size())
/ 256.0, # linear scaling rule
args.min_lr,
args.epochs,
len_dataloader,
warmup_epochs=args.warmup_epochs,
)
wd_schedule = cosine_scheduler(
args.weight_decay,
args.weight_decay_end,
args.epochs,
len_dataloader, # len(data_loader),
)
# momentum parameter is increased to 1. during training with a cosine schedule
momentum_schedule = cosine_scheduler(
args.momentum_teacher, 1, args.epochs, len_dataloader
)
print("Loss, optimizer and schedulers ready.")
return optimizer, fp16_scaler, lr_schedule, wd_schedule, momentum_schedule
|