File size: 15,896 Bytes
3c849be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
multi-crop dataset to implement multi-crop augmentation and also dataset
"""
import copy
import random

import torch
import torchvision.transforms as transforms
from PIL import Image, ImageFilter, ImageOps
from src.dataset import ImageFolder
from src.RandAugment import rand_augment_transform
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data.random_erasing import RandomErasing
from timm.data.transforms import _pil_interp


class GaussianBlur(object):
    """
    Apply Gaussian Blur to the PIL image.
    """

    def __init__(self, p=0.5, radius_min=0.1, radius_max=2.0):
        self.prob = p
        self.radius_min = radius_min
        self.radius_max = radius_max

    def __call__(self, img):
        do_it = random.random() <= self.prob
        if not do_it:
            return img

        return img.filter(
            ImageFilter.GaussianBlur(
                radius=random.uniform(self.radius_min, self.radius_max)
            )
        )


class Solarization(object):
    """
    Apply Solarization to the PIL image.
    """

    def __init__(self, p):
        self.p = p

    def __call__(self, img):
        if random.random() < self.p:
            return ImageOps.solarize(img)
        else:
            return img


def strong_transforms(
    img_size=224,
    scale=(0.08, 1.0),
    ratio=(0.75, 1.3333333333333333),
    hflip=0.5,
    vflip=0.0,
    color_jitter=0.4,
    auto_augment="rand-m9-mstd0.5-inc1",
    interpolation="random",
    use_prefetcher=True,
    mean=IMAGENET_DEFAULT_MEAN,  # (0.485, 0.456, 0.406)
    std=IMAGENET_DEFAULT_STD,  # (0.229, 0.224, 0.225)
    re_prob=0.25,
    re_mode="pixel",
    re_count=1,
    re_num_splits=0,
    color_aug=False,
    strong_ratio=0.45,
):
    """
    for use in a mixing dataset that passes
     * all data through the first (primary) transform, called the 'clean' data
     * a portion of the data through the secondary transform
     * normalizes and converts the branches above with the third, final transform
    """

    scale = tuple(scale or (0.08, 1.0))  # default imagenet scale range
    ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0))  # default imagenet ratio range

    primary_tfl = []
    if hflip > 0.0:
        primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
    if vflip > 0.0:
        primary_tfl += [transforms.RandomVerticalFlip(p=vflip)]

    secondary_tfl = []
    if auto_augment:
        assert isinstance(auto_augment, str)
        if isinstance(img_size, tuple):
            img_size_min = min(img_size)
        else:
            img_size_min = img_size
        aa_params = dict(
            translate_const=int(img_size_min * strong_ratio),
            img_mean=tuple([min(255, round(255 * x)) for x in mean]),
        )
        if interpolation and interpolation != "random":
            aa_params["interpolation"] = _pil_interp(interpolation)
        if auto_augment.startswith("rand"):
            secondary_tfl += [rand_augment_transform(auto_augment, aa_params)]
    if color_jitter is not None and color_aug:
        # color jitter is enabled when not using AA
        flip_and_color_jitter = [
            transforms.RandomApply(
                [
                    transforms.ColorJitter(
                        brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1
                    )
                ],
                p=0.8,
            ),
            transforms.RandomGrayscale(p=0.2),
        ]
        secondary_tfl += flip_and_color_jitter

    if interpolation == "random":
        interpolation = (Image.BILINEAR, Image.BICUBIC)
    else:
        interpolation = _pil_interp(interpolation)
    final_tfl = [
        transforms.RandomResizedCrop(
            size=img_size, scale=scale, ratio=ratio, interpolation=Image.BICUBIC
        )
    ]
    if use_prefetcher:
        # prefetcher and collate will handle tensor conversion and norm
        final_tfl += [transforms.ToTensor()]
    else:
        final_tfl += [
            transforms.ToTensor(),
            transforms.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
        ]
    if re_prob > 0.0:
        final_tfl.append(
            RandomErasing(
                re_prob,
                mode=re_mode,
                max_count=re_count,
                num_splits=re_num_splits,
                device="cpu",
            )
        )
    return transforms.Compose(primary_tfl + secondary_tfl + final_tfl)


class DataAugmentation(object):
    """
    implement multi-crop data augmentation.
    --global_crops_scale: scale range of the 224-sized cropped image before resizing
    --local_crops_scale: scale range of the 96-sized cropped image before resizing
    --local_crops_number: Number of small local views to generate
    --prob: when we use strong augmentation and weak augmentation, the ratio of images to
        be cropped with strong augmentation
    --vanilla_weak_augmentation: whether we use the same augmentation in DINO, namely
        only using weak augmentation
    --color_aug: after AutoAugment, whether we further perform color augmentation
    --local_crop_size: the small crop size
    --timm_auto_augment_par: the parameters for the AutoAugment used in DeiT
    --strong_ratio: the ratio of image augmentation for the AutoAugment used in DeiT
    --re_prob: the re-prob parameter of image augmentation for the AutoAugment used in DeiT
    --use_prefetcher: whether we use prefetcher which can accerelate the training speed
    """

    def __init__(
        self,
        global_crops_scale,
        local_crops_scale,
        local_crops_number,
        prob=0.5,
        vanilla_weak_augmentation=False,
        color_aug=False,
        local_crop_size=[96],
        timm_auto_augment_par="rand-m9-mstd0.5-inc1",
        strong_ratio=0.45,
        re_prob=0.25,
        use_prefetcher=False,
    ):

        ## propability to perform strong augmentation
        self.prob = prob
        ## whether we use the commonly used augmentations, e.g. DINO or MoCo-V3
        self.vanilla_weak_augmentation = vanilla_weak_augmentation

        flip_and_color_jitter = transforms.Compose(
            [
                transforms.RandomHorizontalFlip(p=0.5),
                transforms.RandomApply(
                    [
                        transforms.ColorJitter(
                            brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1
                        )
                    ],
                    p=0.8,
                ),
                transforms.RandomGrayscale(p=0.2),
            ]
        )

        if use_prefetcher:
            normalize = transforms.Compose(
                [
                    transforms.ToTensor(),
                ]
            )
        else:
            normalize = transforms.Compose(
                [
                    transforms.ToTensor(),
                    transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
                ]
            )

        ##====== build augmentation of global crops, i.e. 224-sized image crops =========
        # first global crop, always weak augmentation
        self.global_transfo1 = transforms.Compose(
            [
                transforms.RandomResizedCrop(
                    224, scale=global_crops_scale, interpolation=Image.BICUBIC
                ),
                flip_and_color_jitter,
                GaussianBlur(1.0),
                normalize,
            ]
        )

        # second global crop, always weak augmentation
        self.global_transfo2 = transforms.Compose(
            [
                transforms.RandomResizedCrop(
                    224, scale=global_crops_scale, interpolation=Image.BICUBIC
                ),
                flip_and_color_jitter,
                GaussianBlur(0.1),
                Solarization(0.2),
                normalize,
            ]
        )

        # strong augmentation, maybe used if we need to perform strong augmentation
        self.global_transfo3 = strong_transforms(
            img_size=224,
            scale=global_crops_scale,
            ratio=(0.75, 1.3333333333333333),
            hflip=0.5,
            vflip=0.0,
            color_jitter=0.4,
            auto_augment=timm_auto_augment_par,  # 'rand-m9-mstd0.5-inc1'
            interpolation="random",
            use_prefetcher=use_prefetcher,  # True
            mean=IMAGENET_DEFAULT_MEAN,  # (0.485, 0.456, 0.406)
            std=IMAGENET_DEFAULT_STD,  # (0.229, 0.224, 0.225)
            re_prob=re_prob,  # 0.25
            re_mode="pixel",
            re_count=1,
            re_num_splits=0,
            color_aug=color_aug,
            strong_ratio=strong_ratio,
        )

        ##====== build augmentation of local crops, i.e. 96-sized image crops =========
        self.local_crops_number = (
            local_crops_number  # transformation for the local small crops
        )
        assert local_crop_size[0] == 96
        # weak augmentation, maybe used if we need to perform weak augmentation
        self.local_transfo = transforms.Compose(
            [
                transforms.RandomResizedCrop(
                    local_crop_size[0],
                    scale=local_crops_scale,
                    interpolation=Image.BICUBIC,
                ),
                flip_and_color_jitter,
                GaussianBlur(p=0.5),
                normalize,
            ]
        )
        # strong augmentation, maybe used if we need to perform strong augmentation
        self.local_transfo2 = strong_transforms(
            img_size=local_crop_size[0],  # (224, 224)
            scale=local_crops_scale,  # (0.08, 1.0)
            ratio=(0.75, 1.3333333333333333),  # (0.75, 1.3333333333333333)
            hflip=0.5,  # 0.5
            vflip=0.0,  # 0.0
            color_jitter=0.4,  # 0.4
            auto_augment=timm_auto_augment_par,  # 'rand-m9-mstd0.5-inc1'
            interpolation="random",  # 'random'
            use_prefetcher=use_prefetcher,  # True
            mean=IMAGENET_DEFAULT_MEAN,  # (0.485, 0.456, 0.406)
            std=IMAGENET_DEFAULT_STD,  # (0.229, 0.224, 0.225)
            re_prob=re_prob,  # 0.25
            re_mode="pixel",  # 'pixel'
            re_count=1,  # 1
            re_num_splits=0,  # 0
            color_aug=color_aug,
            strong_ratio=strong_ratio,
        )

    def __call__(self, image):
        """
        implement multi-crop data augmentation. Generate two 224-sized +
        "local_crops_number" 96-sized images
        """
        crops = []
        ##====== images to be fed into teacher, two 224-sized =========
        img1 = self.global_transfo1(image)
        img2 = self.global_transfo2(image)
        crops.append(img1)
        crops.append(img2)

        ##====== images to be fed into student, two 224-sized + "local_crops_number" 96-sized =========
        # first to generate two 224-sized
        # this weak_flag indicates whether the current image is weakly augmented.
        # For local group supervision, we only use weakly augmented images of size 224 to
        # update the memory for local-group aggregation.
        weak_flag = False

        if self.vanilla_weak_augmentation is True:
            ## directly copy the images of weak augmentation
            crops.append(copy.deepcopy(img1))
            crops.append(copy.deepcopy(img2))
            weak_flag = True
        elif self.prob < 1.0 and random.random() > self.prob:
            ## whether perform strong augmentation
            crops.append(self.global_transfo3(image))
            crops.append(self.global_transfo3(image))
        else:
            ## perform weak augmentation
            crops.append(self.global_transfo1(image))
            crops.append(self.global_transfo2(image))
            weak_flag = True

        # then to generate "local_crops_number" 96-sized
        for _ in range(self.local_crops_number):
            if self.prob < 1.0 and random.random() > self.prob:
                ## whether perform strong augmentation
                crops.append(self.local_transfo2(image))
            else:
                ## perform weak augmentation
                crops.append(self.local_transfo(image))

        return crops, weak_flag


def get_dataset(args):
    """
    build a multi-crop data augmentation and a dataset/dataloader
    """
    ## preparing augmentations, including weak and strong augmentations
    transform = DataAugmentation(
        global_crops_scale=args.global_crops_scale,
        local_crops_scale=args.local_crops_scale,
        local_crops_number=args.local_crops_number,
        vanilla_weak_augmentation=args.vanilla_weak_augmentation,
        prob=args.prob,
        color_aug=args.color_aug,
        local_crop_size=args.size_crops,
        timm_auto_augment_par=args.timm_auto_augment_par,
        strong_ratio=args.strong_ratio,
        re_prob=args.re_prob,
        use_prefetcher=args.use_prefetcher,
    )

    ## For debug mode, we only load the first two classes to reduce data reading time.
    ## otherwise, we load all training data for pretraining.
    class_num = 2 if args.debug else 1000
    dataset = ImageFolder(args.data_path, transform=transform, class_num=class_num)

    sampler = torch.utils.data.DistributedSampler(dataset, shuffle=True)
    data_loader = torch.utils.data.DataLoader(
        dataset,
        sampler=sampler,
        batch_size=args.batch_size_per_gpu,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=True,
    )
    return data_loader


class data_prefetcher:
    """
    implement data prefetcher. we perform some augmentation on GPUs intead of CPUs
    --loader: a data loader
    --fp16: whether we use fp16, if yes, we need to tranform the data to be fp16
    """

    def __init__(self, loader, fp16=True):
        self.loader = iter(loader)
        self.fp16 = fp16
        self.stream = torch.cuda.Stream()
        self.mean = torch.tensor([0.485, 0.456, 0.406]).cuda().view(1, 3, 1, 1)
        self.std = torch.tensor([0.229, 0.224, 0.225]).cuda().view(1, 3, 1, 1)
        if fp16:
            self.mean = self.mean.half()
            self.std = self.std.half()

        self.preload()

    def preload(self):
        """
        preload the next minibatch of data
        """
        try:
            self.multi_crops, self.weak_flag = next(self.loader)
        except StopIteration:
            self.multi_crops, self.weak_flag = None, None
            return

        with torch.cuda.stream(self.stream):
            for i in range(len(self.multi_crops)):
                self.multi_crops[i] = self.multi_crops[i].cuda(non_blocking=True)
                if self.fp16:
                    self.multi_crops[i] = (
                        self.multi_crops[i].half().sub_(self.mean).div_(self.std)
                    )
                else:
                    self.multi_crops[i] = (
                        self.multi_crops[i].float().sub_(self.mean).div_(self.std)
                    )

    def next(self):
        """
        load the next minibatch of data
        """
        torch.cuda.current_stream().wait_stream(self.stream)
        multi_crops, weak_flags = self.multi_crops, self.weak_flag
        self.preload()
        return multi_crops, weak_flags