File size: 29,408 Bytes
3c849be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 |
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Mugs training code
"""
import argparse
import datetime
import json
import math
import os
import sys
import time
from collections import OrderedDict
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torchvision import models as torchvision_models
import utils
from src.loss import get_multi_granular_loss
from src.model import get_model
from src.multicropdataset import data_prefetcher, get_dataset
from src.optimizer import cancel_gradients_last_layer, get_optimizer, clip_gradients
torchvision_archs = sorted(
name
for name in torchvision_models.__dict__
if name.islower()
and not name.startswith("__")
and callable(torchvision_models.__dict__[name])
)
def get_args_parser():
parser = argparse.ArgumentParser("Mugs", add_help=False)
##======== Model parameters ============
parser.add_argument(
"--arch",
type=str,
default="vit_small",
choices=["vit_small", "vit_base", "vit_large"],
help="""Name of architecture to train.""",
)
parser.add_argument(
"--patch_size",
type=int,
default=16,
help="""Size in pixels
of input square patches - default 16 (for 16x16 patches). Using smaller
values leads to better performance but requires more memory. Applies only
for ViTs (vit_small and vit_base). If <16, we recommend disabling
mixed precision training (--use_fp16 false) to avoid unstabilities.""",
)
##======== Training/Optimization parameters ============
parser.add_argument(
"--momentum_teacher",
type=float,
default=0.996,
help="""Base EMA
parameter for teacher update. The value is increased to 1 during training with
cosine schedule. We recommend setting a higher value with small batches: for
example use 0.9995 with batch size of 256.""",
)
parser.add_argument(
"--use_fp16",
type=utils.bool_flag,
default=False,
help="""Whether or not
to use half precision for training. Improves training time and memory requirements,
but can provoke instability and slight decay of performance. We recommend disabling
mixed precision if the loss is unstable, if reducing the patch size or if training
with bigger ViTs.""",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.04,
help="""Initial value of the
weight decay. With ViT, a smaller value at the beginning of training works well.""",
)
parser.add_argument(
"--weight_decay_end",
type=float,
default=0.2,
help="""Final value of the
weight decay. We use a cosine schedule for WD and using a larger decay by
the end of training improves performance for ViTs.""",
)
parser.add_argument(
"--clip_grad",
type=float,
default=3.0,
help="""Maximal parameter
gradient norm if using gradient clipping. Clipping with norm .3 ~ 1.0 can
help optimization for larger ViT architectures. 0 for disabling.""",
)
parser.add_argument(
"--batch_size_per_gpu",
type=int,
default=64,
help="Per-GPU batch-size : number of distinct images loaded on one GPU.",
)
parser.add_argument(
"--epochs", type=int, default=100, help="Number of epochs of training."
)
parser.add_argument(
"--warmup_epochs",
default=10,
type=int,
help="""Number of epochs for the linear learning-rate warm up.=""",
)
parser.add_argument(
"--freeze_last_layer",
type=int,
default=1,
help="""Number of epochs during
which we keep the output layer fixed for the group supervision loss. Typically doing so during
the first epoch helps training. Try increasing this value if the loss does not decrease.""",
)
parser.add_argument(
"--lr",
type=float,
default=0.0008,
help="""Learning rate at the end of
linear warmup (highest LR used during training). The learning rate is linearly scaled
with the batch size, and specified here for a reference batch size of 256.""",
)
parser.add_argument(
"--patch_embed_lr_mult",
type=float,
default=0.2,
help="""For patch
embedding layer, its learning rate is lr * patch_embed_lr_mult (<1.0) in most case, which
stables training and also slightly improve the performance.""",
)
parser.add_argument(
"--min_lr",
type=float,
default=1e-6,
help="""Target LR at the
end of optimization. We use a cosine LR schedule with linear warmup.""",
)
parser.add_argument(
"--optimizer",
type=str,
default="adamw",
choices=["adamw", "sgd", "lars"],
help="""Type of optimizer. We recommend using adamw
with ViTs.""",
)
parser.add_argument(
"--drop_path_rate", type=float, default=0.1, help="""stochastic depth rate"""
)
##======== Multi-granular supervisions (instance/local-group/group supervisions) ==========
parser.add_argument(
"--loss_weights",
type=float,
nargs="+",
default=[1.0, 1.0, 1.0],
help="""three loss weights for instance, local-group, group supervision losses in turn""",
)
parser.add_argument(
"--use_bn_in_head",
type=utils.bool_flag,
default=False,
help="Whether to use batch normalizations in the three projection heads (Default: False)",
)
parser.add_argument(
"--norm_before_pred",
type=utils.bool_flag,
default=True,
help="""Whether to use batch normalizations after projection heads (namely before
prediction heads) in instance and local-group supervisions. (Default: False)""",
)
# parameters for instance discrimination supervision
parser.add_argument(
"--instance_out_dim",
type=int,
default=256,
help="""output dimention in the projection and prediction heads.""",
)
parser.add_argument(
"--instance_queue_size",
type=int,
default=65536,
help="""the queue size of the memory to store the negative keys.""",
)
parser.add_argument(
"--instance_temp",
type=float,
default=0.2,
help="""the temperature parameters for the infoNCE loss in instance supervision.""",
)
# parameters for local-group discrimination supervision
parser.add_argument(
"--local_group_out_dim",
type=int,
default=256,
help="""output dimention in the projection and prediction heads.""",
)
parser.add_argument(
"--local_group_knn_top_n",
type=int,
default=8,
help="how many neighbors we use to aggregate for a local-group",
)
parser.add_argument(
"--local_group_queue_size",
type=int,
default=65536,
help="""the queue sizes of the memory to store the negative keys for infoNCE loss and
another memory size to store the weak augmentated samples for local-group aggregation.""",
)
parser.add_argument(
"--local_group_temp",
type=float,
default=0.2,
help="""the temperature parameters for the infoNCE loss in instance supervision.""",
)
## parameters for group discrimination supervision
parser.add_argument(
"--group_out_dim",
type=int,
default=65536,
help="""output dimention in the prediction heads.""",
)
parser.add_argument(
"--group_bottleneck_dim",
type=float,
default=256,
help="""head bottleneck dimention in the prediction heads.""",
)
parser.add_argument(
"--norm_last_layer",
type=utils.bool_flag,
default=True,
help="""Whether or not to weight normalize the last layer of the group supervision head.
Not normalizing leads to better performance but can make the training unstable. We
typically set this paramater to False with vit_small and True with vit_base and vit_large.""",
)
parser.add_argument(
"--group_student_temp",
type=float,
default=0.1,
help="""the temperature parameters for the clustering loss in student output.""",
)
parser.add_argument(
"--group_warmup_teacher_temp",
default=0.04,
type=float,
help="""Initial value for the teacher temperature: 0.04 works well in most cases.
Try decreasing it if the training loss does not decrease.""",
)
parser.add_argument(
"--group_teacher_temp",
default=0.04,
type=float,
help="""Final value
(after linear warmup) of the teacher temperature. For most experiments, anything above
0.07 is unstable. We recommend starting with the default value of 0.04 and increase
this slightly if needed.""",
)
parser.add_argument(
"--group_warmup_teacher_temp_epochs",
default=0,
type=int,
help="""Number of warmup epochs for the teacher temperature (Default: 30).""",
)
##======== augmentation parameters ============
# Multi-crop parameters
parser.add_argument(
"--global_crops_scale",
type=float,
nargs="+",
default=(0.25, 1.0),
help="""Scale range of the cropped image before resizing, relatively to the origin image.
Used for large global view cropping. When disabling multi-crop (--local_crops_number 0), we
recommand using a wider range of scale ("--global_crops_scale 0.14 1." for example)""",
)
parser.add_argument(
"--local_crops_number",
type=int,
default=10,
help="""Number of small
local views to generate. Set this parameter to 0 to disable multi-crop training.
When disabling multi-crop we recommend to use "--global_crops_scale 0.14 1." """,
)
parser.add_argument(
"--local_crops_scale",
type=float,
nargs="+",
default=(0.05, 0.25),
help="""Scale range of the cropped image before resizing, relatively to the origin image.
Used for small local view cropping of multi-crop.""",
)
# strong augmentation parameters
parser.add_argument(
"--timm_auto_augment_par",
type=str,
default="rand-m9-mstd0.5-inc1",
help="""the parameters for the AutoAugment used in DeiT.""",
)
parser.add_argument(
"--color_aug",
type=utils.bool_flag,
default=False,
help="""after AutoAugment, whether we further perform color augmentation. (Default: False).""",
)
parser.add_argument(
"--size_crops",
type=int,
default=[96],
nargs="+",
help="""the small crop size. Note we use multi-crop strategy, namely two 224-sized crops +
ten 96-sized crops. (Default: 96)""",
)
parser.add_argument(
"--strong_ratio",
type=float,
default=0.45,
help="""the ratio of image augmentation for the AutoAugment used in DeiT.""",
)
parser.add_argument(
"--re_prob",
type=float,
default=0.25,
help="""the re-prob parameter of image augmentation for the AutoAugment used in DeiT.""",
)
parser.add_argument(
"--vanilla_weak_augmentation",
type=utils.bool_flag,
default=False,
help="""Whether we use the same augmentation in DINO, namely only using weak augmentation.""",
)
parser.add_argument(
"--prob",
type=float,
default=0.5,
help="""When we use strong augmentation and weak augmentation, the ratio of images to
be cropped with strong augmentation.""",
)
##======== Misc ============
parser.add_argument(
"--data_path",
default="/dataset/imageNet100_sicy/train/",
type=str,
help="""Please specify path to the ImageNet training data.""",
)
parser.add_argument(
"--output_dir",
default="./exp/",
type=str,
help="""Path to save logs and checkpoints.""",
)
parser.add_argument(
"--saveckp_freq",
default=50,
type=int,
help="""Save checkpoint every x epochs.""",
)
parser.add_argument("--seed", default=0, type=int, help="""Random seed.""")
parser.add_argument(
"--num_workers",
default=12,
type=int,
help="""Number of data loading workers per GPU.""",
)
parser.add_argument(
"--dist_url",
default="env://",
type=str,
help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""",
)
parser.add_argument(
"--local_rank",
default=0,
type=int,
help="""local rank for distrbuted training.""",
)
parser.add_argument(
"--rank", default=0, type=int, help="""rank for distrbuted training."""
)
parser.add_argument(
"--world_size",
default=1,
type=int,
help="""world size for distrbuted training.""",
)
parser.add_argument(
"--use_prefetcher",
type=utils.bool_flag,
default=True,
help="""whether we use prefetcher which can accerelate the training speed.""",
)
parser.add_argument(
"--debug",
type=utils.bool_flag,
default=False,
help="""whether we debug. if yes, we only load small fraction of training data to reduce data reading time.""",
)
parser.add_argument(
"--ddpjob",
default=False,
type=utils.bool_flag,
help="""whether we use ddp job. We suggest to use it for distributed training. For single GPUs
or Node, you can close it.""",
)
return parser
def train_mugs(args):
"""
main training code for Mugs, including building dataloader, models, losses, optimizers, etc
"""
##======== prepare logger for more detailed logs ============
logger = utils.get_logger(args.output_dir + "/train.log")
logger.info(args)
if args.output_dir and utils.is_main_process():
with (Path(args.output_dir) / "log.txt").open("a") as f:
f.write(str(args) + "\n")
##======== initilize distribution ============
if args.ddpjob is True:
utils.init_distributed_ddpjob(args)
else:
utils.init_distributed_mode(args)
##======== fix seed for reproduce ============
utils.fix_random_seeds(args.seed)
print("git:\n {}\n".format(utils.get_sha()))
print(
"\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))
)
cudnn.benchmark = True
cudnn.deterministic = True
##======== get the training dataset/loader ============
data_loader = get_dataset(args)
logger.info(f"Data loaded: there are {len(data_loader.dataset)} images.")
##====== build student and teacher networks (vit_small, vit_base, vit_large) =========
student, teacher, student_mem, teacher_mem = get_model(args)
# move networks to gpu
student, teacher = student.cuda(), teacher.cuda()
student_mem, teacher_mem = student_mem.cuda(), teacher_mem.cuda()
# synchronize batch norms (if any)
if utils.has_batchnorms(student):
student = nn.SyncBatchNorm.convert_sync_batchnorm(student)
teacher = nn.SyncBatchNorm.convert_sync_batchnorm(teacher)
# we need DDP wrapper to have synchro batch norms working...
teacher = nn.parallel.DistributedDataParallel(teacher, device_ids=[args.gpu])
teacher_without_ddp = teacher.module
else:
# teacher_without_ddp and teacher are the same thing
teacher_without_ddp = teacher
student = nn.parallel.DistributedDataParallel(student, device_ids=[args.gpu])
# teacher and student start with the same weights
teacher_without_ddp.load_state_dict(student.module.state_dict(), strict=False)
# there is no backpropagation through the teacher, so no need for gradients
for p in teacher.parameters():
p.requires_grad = False
print(f"Student and Teacher are built: they are both {args.arch} network.")
##======== get multi granular losses and their loss weights ============
all_losses, all_weights = get_multi_granular_loss(args)
##======== preparing optimizer ============
optimizer, fp16_scaler, lr_schedule, wd_schedule, momentum_schedule = get_optimizer(
student, len(data_loader), args
)
##======== optionally resume training ============
to_restore = {"epoch": 0}
utils.restart_from_checkpoint(
os.path.join(args.output_dir, "checkpoint.pth"),
run_variables=to_restore,
student=student,
teacher=teacher,
optimizer=optimizer,
fp16_scaler=fp16_scaler,
student_mem=student_mem,
teacher_mem=teacher_mem,
**all_losses,
)
start_epoch = to_restore["epoch"]
##======== Starting Mugs training ============
logger.info("Starting Mugs training !")
start_time = time.time()
for epoch in range(start_epoch, args.epochs):
t1 = time.time()
data_loader.sampler.set_epoch(epoch)
##======== training one epoch of Mugs ============
train_stats = train_one_epoch(
student,
teacher,
teacher_without_ddp,
all_losses,
all_weights,
data_loader,
optimizer,
lr_schedule,
wd_schedule,
momentum_schedule,
epoch,
fp16_scaler,
student_mem,
teacher_mem,
logger,
args,
)
##======== save model checkpoint ============
save_dict = {
"student": student.state_dict(),
"teacher": teacher.state_dict(),
"student_mem": student_mem.state_dict()
if student_mem is not None
else None,
"teacher_mem": teacher_mem.state_dict()
if teacher_mem is not None
else None,
"optimizer": optimizer.state_dict(),
"epoch": epoch + 1,
"args": args,
}
granular_loss_dicts = {}
for name, loss in all_losses.items():
granular_loss_dicts[name] = loss.state_dict()
save_dict.update(granular_loss_dicts)
if fp16_scaler is not None:
save_dict["fp16_scaler"] = fp16_scaler.state_dict()
utils.save_on_master(save_dict, os.path.join(args.output_dir, "checkpoint.pth"))
if args.saveckp_freq and epoch % args.saveckp_freq == 0:
utils.save_on_master(
save_dict, os.path.join(args.output_dir, f"checkpoint{epoch:04}.pth")
)
##======== writing logs ============
log_stats = {**{f"{k}": v for k, v in train_stats.items()}, "epoch": epoch}
if utils.is_main_process():
with (Path(args.output_dir) / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
t2 = time.time()
log_results = ""
for k, v in train_stats.items():
log_results += "%s: %.6f, " % (k, v)
logger.info(
"%d-epoch: %s remaining time %.2f hours"
% (epoch, log_results, (t2 - t1) * (args.epochs - epoch) / 3600.0)
)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info("Training time {}".format(total_time_str))
def train_one_epoch(
student,
teacher,
teacher_without_ddp,
all_losses,
all_weights,
data_loader,
optimizer,
lr_schedule,
wd_schedule,
momentum_schedule,
epoch,
fp16_scaler,
student_mem,
teacher_mem,
logger,
args,
):
"""
main training code for each epoch
"""
metric_logger = utils.MetricLogger(delimiter=" ")
prefetcher = data_prefetcher(data_loader, fp16=(fp16_scaler is not None))
images, weak_aug_flags = prefetcher.next()
epoch_it = 0
while images is not None:
# Step 1. update weight decay and learning rate according to their schedule
it = len(data_loader) * epoch + epoch_it # global training iteration
for _, param_group in enumerate(optimizer.param_groups):
lr_mult = 1.0
if "patch_embed" in param_group["name"]:
lr_mult = args.patch_embed_lr_mult
param_group["lr"] = lr_schedule[it] * lr_mult
if param_group.get("apply_wd", True): # only the first group is regularized
param_group["weight_decay"] = wd_schedule[it]
granular_losses = OrderedDict()
total_loss = 0
with torch.cuda.amp.autocast(fp16_scaler is not None):
## Step 2. forward images into teacher and student to obtain the
# features/superivisons for the three granular superivison losses
(
teacher_instance_target,
teacher_local_group_target,
teacher_group_target,
teacher_memory_tokens,
) = teacher(
images[:2],
return_target=True,
local_group_memory_inputs={"mem": teacher_mem},
)
(
student_instance_target,
student_local_group_target,
student_group_target,
student_memory_tokens,
) = student(
images[2:],
return_target=False,
local_group_memory_inputs={"mem": student_mem},
)
## Step 3. compute the three granular supervision losses, including instance,
# local-group, group supervision losses
weigts_sum, total_loss, granular_losses = 0.0, 0.0, OrderedDict()
# instance loss
loss_cls, loss_weight = (
all_losses["instance-sup."],
all_weights["instance-sup."],
)
if loss_weight > 0:
instance_loss = loss_cls(
student_instance_target, teacher_instance_target, epoch
)
weigts_sum, total_loss = (
weigts_sum + loss_weight,
total_loss + instance_loss,
)
granular_losses["instance-sup."] = instance_loss.item()
# local group loss
loss_cls, loss_weight = (
all_losses["local-group-sup."],
all_weights["local-group-sup."],
)
if loss_weight > 0:
local_group_loss = loss_cls(
student_local_group_target, teacher_local_group_target, epoch
)
weigts_sum, total_loss = (
weigts_sum + loss_weight,
total_loss + local_group_loss,
)
granular_losses["local-group-sup."] = local_group_loss.item()
# group loss
loss_cls, loss_weight = all_losses["group-sup."], all_weights["group-sup."]
if loss_weight > 0:
group_loss = loss_cls(student_group_target, teacher_group_target, epoch)
weigts_sum, total_loss = (
weigts_sum + loss_weight,
total_loss + group_loss,
)
granular_losses["group-sup."] = group_loss.item()
# average loss
total_loss /= weigts_sum
## ## Step 4. update the memory buffer for local-group supervision losses.
# for student, we only update memory by the image of size 224 and weak augmentations
student_features = (student_memory_tokens.chunk(2))[0]
len_weak = student_mem._dequeue_and_enqueue(
student_features,
weak_aug_flags,
)
teacher_weak = (teacher_memory_tokens.chunk(2))[0]
_ = teacher_mem._dequeue_and_enqueue(teacher_weak, None)
if not math.isfinite(total_loss.item()):
print("Loss is {}, stopping training".format(total_loss.item()), force=True)
sys.exit(1)
## Step 5. student and teacher update
# student update
optimizer.zero_grad()
if fp16_scaler is None:
total_loss.backward()
if args.clip_grad:
clip_grad = args.clip_grad
if epoch > 100 and args.arch == "vit_large":
clip_grad = args.clip_grad / 10.0
_ = clip_gradients(student, clip_grad)
cancel_gradients_last_layer(epoch, student, args.freeze_last_layer)
optimizer.step()
else:
fp16_scaler.scale(total_loss).backward()
if args.clip_grad:
clip_grad = args.clip_grad
if epoch > 100 and args.arch == "vit_large":
clip_grad = args.clip_grad /10.0
fp16_scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
_ = clip_gradients(student, clip_grad)
cancel_gradients_last_layer(epoch, student, args.freeze_last_layer)
fp16_scaler.step(optimizer)
fp16_scaler.update()
# EMA update for the teacher
with torch.no_grad():
m = momentum_schedule[it] # momentum parameter
for param_q, param_k in zip(
student.module.backbone.parameters(),
teacher_without_ddp.backbone.parameters(),
):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
if teacher_without_ddp.instance_head is not None:
for param_q, param_k in zip(
student.module.instance_head.parameters(),
teacher_without_ddp.instance_head.parameters(),
):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
if teacher_without_ddp.local_group_head is not None:
for param_q, param_k in zip(
student.module.local_group_head.parameters(),
teacher_without_ddp.local_group_head.parameters(),
):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
if teacher_without_ddp.group_head is not None:
for param_q, param_k in zip(
student.module.group_head.parameters(),
teacher_without_ddp.group_head.parameters(),
):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
## Step 6. load images
images, weak_aug_flags = prefetcher.next()
epoch_it += 1
## Step 7. logging
torch.cuda.synchronize()
metric_logger.update(loss=total_loss.item())
for loss_name, loss_value in granular_losses.items():
metric_logger.update(**{loss_name: loss_value})
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(wd=optimizer.param_groups[0]["weight_decay"])
if epoch_it % 500 == 0 and args.rank == 0: # and epoch_it < 10:
log_results = ""
for _, loss_name in enumerate(all_losses):
if all_weights[loss_name] > 0:
log_results += "%s: %.6f," % (
loss_name,
metric_logger.meters[loss_name].global_avg,
)
logger.info(
"%d-epoch (%d/%d): total loss %.6f, %s, lr %.4e, wd %.4e, weak aug. ratio %.1f"
% (
epoch,
it,
len(data_loader),
metric_logger.meters["loss"].global_avg,
log_results,
optimizer.param_groups[0]["lr"],
optimizer.param_groups[0]["weight_decay"],
len_weak / len(weak_aug_flags) / args.world_size,
)
)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
if __name__ == "__main__":
parser = argparse.ArgumentParser("Mugs", parents=[get_args_parser()])
args = parser.parse_args()
if not os.path.exists(args.output_dir):
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
train_mugs(args)
|