File size: 29,408 Bytes
3c849be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Mugs training code
"""
import argparse
import datetime
import json
import math
import os
import sys
import time
from collections import OrderedDict
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torchvision import models as torchvision_models

import utils
from src.loss import get_multi_granular_loss
from src.model import get_model
from src.multicropdataset import data_prefetcher, get_dataset
from src.optimizer import cancel_gradients_last_layer, get_optimizer, clip_gradients

torchvision_archs = sorted(
    name
    for name in torchvision_models.__dict__
    if name.islower()
    and not name.startswith("__")
    and callable(torchvision_models.__dict__[name])
)


def get_args_parser():
    parser = argparse.ArgumentParser("Mugs", add_help=False)

    ##======== Model parameters ============
    parser.add_argument(
        "--arch",
        type=str,
        default="vit_small",
        choices=["vit_small", "vit_base", "vit_large"],
        help="""Name of architecture to train.""",
    )
    parser.add_argument(
        "--patch_size",
        type=int,
        default=16,
        help="""Size in pixels
        of input square patches - default 16 (for 16x16 patches). Using smaller
        values leads to better performance but requires more memory. Applies only
        for ViTs (vit_small and vit_base). If <16, we recommend disabling
        mixed precision training (--use_fp16 false) to avoid unstabilities.""",
    )

    ##======== Training/Optimization parameters ============
    parser.add_argument(
        "--momentum_teacher",
        type=float,
        default=0.996,
        help="""Base EMA
        parameter for teacher update. The value is increased to 1 during training with
        cosine schedule. We recommend setting a higher value with small batches: for
        example use 0.9995 with batch size of 256.""",
    )
    parser.add_argument(
        "--use_fp16",
        type=utils.bool_flag,
        default=False,
        help="""Whether or not
        to use half precision for training. Improves training time and memory requirements,
        but can provoke instability and slight decay of performance. We recommend disabling
        mixed precision if the loss is unstable, if reducing the patch size or if training
        with bigger ViTs.""",
    )
    parser.add_argument(
        "--weight_decay",
        type=float,
        default=0.04,
        help="""Initial value of the
        weight decay. With ViT, a smaller value at the beginning of training works well.""",
    )
    parser.add_argument(
        "--weight_decay_end",
        type=float,
        default=0.2,
        help="""Final value of the
        weight decay. We use a cosine schedule for WD and using a larger decay by
        the end of training improves performance for ViTs.""",
    )
    parser.add_argument(
        "--clip_grad",
        type=float,
        default=3.0,
        help="""Maximal parameter
        gradient norm if using gradient clipping. Clipping with norm .3 ~ 1.0 can
        help optimization for larger ViT architectures. 0 for disabling.""",
    )
    parser.add_argument(
        "--batch_size_per_gpu",
        type=int,
        default=64,
        help="Per-GPU batch-size : number of distinct images loaded on one GPU.",
    )
    parser.add_argument(
        "--epochs", type=int, default=100, help="Number of epochs of training."
    )
    parser.add_argument(
        "--warmup_epochs",
        default=10,
        type=int,
        help="""Number of epochs for the linear learning-rate warm up.=""",
    )
    parser.add_argument(
        "--freeze_last_layer",
        type=int,
        default=1,
        help="""Number of epochs during
        which we keep the output layer fixed for the group supervision loss. Typically doing so during
        the first epoch helps training. Try increasing this value if the loss does not decrease.""",
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=0.0008,
        help="""Learning rate at the end of
        linear warmup (highest LR used during training). The learning rate is linearly scaled
        with the batch size, and specified here for a reference batch size of 256.""",
    )
    parser.add_argument(
        "--patch_embed_lr_mult",
        type=float,
        default=0.2,
        help="""For patch
        embedding layer, its learning rate is lr * patch_embed_lr_mult (<1.0) in most case, which
        stables training and also slightly improve the performance.""",
    )
    parser.add_argument(
        "--min_lr",
        type=float,
        default=1e-6,
        help="""Target LR at the
        end of optimization. We use a cosine LR schedule with linear warmup.""",
    )
    parser.add_argument(
        "--optimizer",
        type=str,
        default="adamw",
        choices=["adamw", "sgd", "lars"],
        help="""Type of optimizer. We recommend using adamw
        with ViTs.""",
    )
    parser.add_argument(
        "--drop_path_rate", type=float, default=0.1, help="""stochastic depth rate"""
    )

    ##========  Multi-granular supervisions (instance/local-group/group supervisions) ==========
    parser.add_argument(
        "--loss_weights",
        type=float,
        nargs="+",
        default=[1.0, 1.0, 1.0],
        help="""three loss weights for instance, local-group, group supervision losses in turn""",
    )

    parser.add_argument(
        "--use_bn_in_head",
        type=utils.bool_flag,
        default=False,
        help="Whether to use batch normalizations in the three projection heads (Default: False)",
    )
    parser.add_argument(
        "--norm_before_pred",
        type=utils.bool_flag,
        default=True,
        help="""Whether to use batch normalizations after projection heads (namely before
        prediction heads) in instance and local-group supervisions. (Default: False)""",
    )

    # parameters for instance discrimination supervision
    parser.add_argument(
        "--instance_out_dim",
        type=int,
        default=256,
        help="""output dimention in the projection and prediction heads.""",
    )
    parser.add_argument(
        "--instance_queue_size",
        type=int,
        default=65536,
        help="""the queue size of the memory to store the negative keys.""",
    )
    parser.add_argument(
        "--instance_temp",
        type=float,
        default=0.2,
        help="""the temperature parameters for the infoNCE loss in instance supervision.""",
    )

    # parameters for local-group discrimination supervision
    parser.add_argument(
        "--local_group_out_dim",
        type=int,
        default=256,
        help="""output dimention in the projection and prediction heads.""",
    )
    parser.add_argument(
        "--local_group_knn_top_n",
        type=int,
        default=8,
        help="how many neighbors we use to aggregate for a local-group",
    )
    parser.add_argument(
        "--local_group_queue_size",
        type=int,
        default=65536,
        help="""the queue sizes of the memory to store the negative keys for infoNCE loss and
        another memory size to store the weak augmentated samples for local-group aggregation.""",
    )
    parser.add_argument(
        "--local_group_temp",
        type=float,
        default=0.2,
        help="""the temperature parameters for the infoNCE loss in instance supervision.""",
    )

    ## parameters for group discrimination supervision
    parser.add_argument(
        "--group_out_dim",
        type=int,
        default=65536,
        help="""output dimention in the prediction heads.""",
    )
    parser.add_argument(
        "--group_bottleneck_dim",
        type=float,
        default=256,
        help="""head bottleneck dimention in the prediction heads.""",
    )
    parser.add_argument(
        "--norm_last_layer",
        type=utils.bool_flag,
        default=True,
        help="""Whether or not to weight normalize the last layer of the group supervision head.
        Not normalizing leads to better performance but can make the training unstable. We
        typically set this paramater to False with vit_small and True with vit_base and vit_large.""",
    )

    parser.add_argument(
        "--group_student_temp",
        type=float,
        default=0.1,
        help="""the temperature parameters for the clustering loss in student output.""",
    )
    parser.add_argument(
        "--group_warmup_teacher_temp",
        default=0.04,
        type=float,
        help="""Initial value for the teacher temperature: 0.04 works well in most cases.
        Try decreasing it if the training loss does not decrease.""",
    )
    parser.add_argument(
        "--group_teacher_temp",
        default=0.04,
        type=float,
        help="""Final value
        (after linear warmup) of the teacher temperature. For most experiments, anything above
        0.07 is unstable. We recommend starting with the default value of 0.04 and increase
        this slightly if needed.""",
    )
    parser.add_argument(
        "--group_warmup_teacher_temp_epochs",
        default=0,
        type=int,
        help="""Number of warmup epochs for the teacher temperature (Default: 30).""",
    )

    ##======== augmentation parameters  ============
    # Multi-crop parameters
    parser.add_argument(
        "--global_crops_scale",
        type=float,
        nargs="+",
        default=(0.25, 1.0),
        help="""Scale range of the cropped image before resizing, relatively to the origin image.
        Used for large global view cropping. When disabling multi-crop (--local_crops_number 0), we
        recommand using a wider range of scale ("--global_crops_scale 0.14 1." for example)""",
    )
    parser.add_argument(
        "--local_crops_number",
        type=int,
        default=10,
        help="""Number of small
        local views to generate. Set this parameter to 0 to disable multi-crop training.
        When disabling multi-crop we recommend to use "--global_crops_scale 0.14 1." """,
    )
    parser.add_argument(
        "--local_crops_scale",
        type=float,
        nargs="+",
        default=(0.05, 0.25),
        help="""Scale range of the cropped image before resizing, relatively to the origin image.
        Used for small local view cropping of multi-crop.""",
    )
    # strong augmentation parameters
    parser.add_argument(
        "--timm_auto_augment_par",
        type=str,
        default="rand-m9-mstd0.5-inc1",
        help="""the parameters for the AutoAugment used in DeiT.""",
    )
    parser.add_argument(
        "--color_aug",
        type=utils.bool_flag,
        default=False,
        help="""after AutoAugment, whether we further perform color augmentation. (Default: False).""",
    )
    parser.add_argument(
        "--size_crops",
        type=int,
        default=[96],
        nargs="+",
        help="""the small crop size. Note we use multi-crop strategy, namely two 224-sized crops +
        ten 96-sized crops. (Default: 96)""",
    )
    parser.add_argument(
        "--strong_ratio",
        type=float,
        default=0.45,
        help="""the ratio of image augmentation for the AutoAugment used in DeiT.""",
    )
    parser.add_argument(
        "--re_prob",
        type=float,
        default=0.25,
        help="""the re-prob parameter of image augmentation for the AutoAugment used in DeiT.""",
    )
    parser.add_argument(
        "--vanilla_weak_augmentation",
        type=utils.bool_flag,
        default=False,
        help="""Whether we use the same augmentation in DINO, namely only using weak augmentation.""",
    )
    parser.add_argument(
        "--prob",
        type=float,
        default=0.5,
        help="""When we use strong augmentation and weak augmentation, the ratio of images to
        be cropped with strong augmentation.""",
    )

    ##======== Misc ============
    parser.add_argument(
        "--data_path",
        default="/dataset/imageNet100_sicy/train/",
        type=str,
        help="""Please specify path to the ImageNet training data.""",
    )
    parser.add_argument(
        "--output_dir",
        default="./exp/",
        type=str,
        help="""Path to save logs and checkpoints.""",
    )
    parser.add_argument(
        "--saveckp_freq",
        default=50,
        type=int,
        help="""Save checkpoint every x epochs.""",
    )
    parser.add_argument("--seed", default=0, type=int, help="""Random seed.""")
    parser.add_argument(
        "--num_workers",
        default=12,
        type=int,
        help="""Number of data loading workers per GPU.""",
    )
    parser.add_argument(
        "--dist_url",
        default="env://",
        type=str,
        help="""url used to set up
        distributed training; see https://pytorch.org/docs/stable/distributed.html""",
    )
    parser.add_argument(
        "--local_rank",
        default=0,
        type=int,
        help="""local rank for distrbuted training.""",
    )
    parser.add_argument(
        "--rank", default=0, type=int, help="""rank for distrbuted training."""
    )
    parser.add_argument(
        "--world_size",
        default=1,
        type=int,
        help="""world size for distrbuted training.""",
    )

    parser.add_argument(
        "--use_prefetcher",
        type=utils.bool_flag,
        default=True,
        help="""whether we use prefetcher which can accerelate the training speed.""",
    )
    parser.add_argument(
        "--debug",
        type=utils.bool_flag,
        default=False,
        help="""whether we debug. if yes, we only load small fraction of training data to reduce data reading time.""",
    )
    parser.add_argument(
        "--ddpjob",
        default=False,
        type=utils.bool_flag,
        help="""whether we use ddp job. We suggest to use it for distributed training. For single GPUs
        or Node, you can close it.""",
    )

    return parser


def train_mugs(args):
    """
    main training code for Mugs, including building dataloader, models, losses, optimizers, etc
    """
    ##======== prepare logger for more detailed logs ============
    logger = utils.get_logger(args.output_dir + "/train.log")
    logger.info(args)
    if args.output_dir and utils.is_main_process():
        with (Path(args.output_dir) / "log.txt").open("a") as f:
            f.write(str(args) + "\n")

    ##======== initilize distribution ============
    if args.ddpjob is True:
        utils.init_distributed_ddpjob(args)
    else:
        utils.init_distributed_mode(args)

    ##======== fix seed for reproduce ============
    utils.fix_random_seeds(args.seed)
    print("git:\n  {}\n".format(utils.get_sha()))
    print(
        "\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))
    )
    cudnn.benchmark = True
    cudnn.deterministic = True

    ##======== get the training dataset/loader ============
    data_loader = get_dataset(args)
    logger.info(f"Data loaded: there are {len(data_loader.dataset)} images.")

    ##====== build  student and teacher networks (vit_small, vit_base, vit_large) =========
    student, teacher, student_mem, teacher_mem = get_model(args)

    # move networks to gpu
    student, teacher = student.cuda(), teacher.cuda()
    student_mem, teacher_mem = student_mem.cuda(), teacher_mem.cuda()

    # synchronize batch norms (if any)
    if utils.has_batchnorms(student):
        student = nn.SyncBatchNorm.convert_sync_batchnorm(student)
        teacher = nn.SyncBatchNorm.convert_sync_batchnorm(teacher)
        # we need DDP wrapper to have synchro batch norms working...
        teacher = nn.parallel.DistributedDataParallel(teacher, device_ids=[args.gpu])
        teacher_without_ddp = teacher.module
    else:
        # teacher_without_ddp and teacher are the same thing
        teacher_without_ddp = teacher
    student = nn.parallel.DistributedDataParallel(student, device_ids=[args.gpu])
    # teacher and student start with the same weights
    teacher_without_ddp.load_state_dict(student.module.state_dict(), strict=False)

    # there is no backpropagation through the teacher, so no need for gradients
    for p in teacher.parameters():
        p.requires_grad = False
    print(f"Student and Teacher are built: they are both {args.arch} network.")

    ##======== get  multi granular losses and their loss weights ============
    all_losses, all_weights = get_multi_granular_loss(args)

    ##======== preparing optimizer ============
    optimizer, fp16_scaler, lr_schedule, wd_schedule, momentum_schedule = get_optimizer(
        student, len(data_loader), args
    )

    ##======== optionally resume training ============
    to_restore = {"epoch": 0}
    utils.restart_from_checkpoint(
        os.path.join(args.output_dir, "checkpoint.pth"),
        run_variables=to_restore,
        student=student,
        teacher=teacher,
        optimizer=optimizer,
        fp16_scaler=fp16_scaler,
        student_mem=student_mem,
        teacher_mem=teacher_mem,
        **all_losses,
    )
    start_epoch = to_restore["epoch"]

    ##======== Starting Mugs training ============
    logger.info("Starting Mugs training !")
    start_time = time.time()
    for epoch in range(start_epoch, args.epochs):
        t1 = time.time()
        data_loader.sampler.set_epoch(epoch)

        ##======== training one epoch of Mugs ============
        train_stats = train_one_epoch(
            student,
            teacher,
            teacher_without_ddp,
            all_losses,
            all_weights,
            data_loader,
            optimizer,
            lr_schedule,
            wd_schedule,
            momentum_schedule,
            epoch,
            fp16_scaler,
            student_mem,
            teacher_mem,
            logger,
            args,
        )

        ##======== save model checkpoint ============
        save_dict = {
            "student": student.state_dict(),
            "teacher": teacher.state_dict(),
            "student_mem": student_mem.state_dict()
            if student_mem is not None
            else None,
            "teacher_mem": teacher_mem.state_dict()
            if teacher_mem is not None
            else None,
            "optimizer": optimizer.state_dict(),
            "epoch": epoch + 1,
            "args": args,
        }
        granular_loss_dicts = {}
        for name, loss in all_losses.items():
            granular_loss_dicts[name] = loss.state_dict()
        save_dict.update(granular_loss_dicts)

        if fp16_scaler is not None:
            save_dict["fp16_scaler"] = fp16_scaler.state_dict()

        utils.save_on_master(save_dict, os.path.join(args.output_dir, "checkpoint.pth"))
        if args.saveckp_freq and epoch % args.saveckp_freq == 0:
            utils.save_on_master(
                save_dict, os.path.join(args.output_dir, f"checkpoint{epoch:04}.pth")
            )

        ##======== writing logs ============
        log_stats = {**{f"{k}": v for k, v in train_stats.items()}, "epoch": epoch}
        if utils.is_main_process():
            with (Path(args.output_dir) / "log.txt").open("a") as f:
                f.write(json.dumps(log_stats) + "\n")

            t2 = time.time()
            log_results = ""
            for k, v in train_stats.items():
                log_results += "%s: %.6f, " % (k, v)
            logger.info(
                "%d-epoch: %s remaining time %.2f hours"
                % (epoch, log_results, (t2 - t1) * (args.epochs - epoch) / 3600.0)
            )

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logger.info("Training time {}".format(total_time_str))


def train_one_epoch(
    student,
    teacher,
    teacher_without_ddp,
    all_losses,
    all_weights,
    data_loader,
    optimizer,
    lr_schedule,
    wd_schedule,
    momentum_schedule,
    epoch,
    fp16_scaler,
    student_mem,
    teacher_mem,
    logger,
    args,
):
    """
    main training code for each epoch
    """
    metric_logger = utils.MetricLogger(delimiter="  ")
    prefetcher = data_prefetcher(data_loader, fp16=(fp16_scaler is not None))
    images, weak_aug_flags = prefetcher.next()
    epoch_it = 0
    while images is not None:
        #  Step 1. update weight decay and learning rate according to their schedule
        it = len(data_loader) * epoch + epoch_it  # global training iteration
        for _, param_group in enumerate(optimizer.param_groups):
            lr_mult = 1.0
            if "patch_embed" in param_group["name"]:
                lr_mult = args.patch_embed_lr_mult
            param_group["lr"] = lr_schedule[it] * lr_mult
            if param_group.get("apply_wd", True):  # only the first group is regularized
                param_group["weight_decay"] = wd_schedule[it]

        granular_losses = OrderedDict()
        total_loss = 0
        with torch.cuda.amp.autocast(fp16_scaler is not None):
            ## Step 2. forward images into teacher and student to obtain the
            # features/superivisons for the three granular superivison losses
            (
                teacher_instance_target,
                teacher_local_group_target,
                teacher_group_target,
                teacher_memory_tokens,
            ) = teacher(
                images[:2],
                return_target=True,
                local_group_memory_inputs={"mem": teacher_mem},
            )

            (
                student_instance_target,
                student_local_group_target,
                student_group_target,
                student_memory_tokens,
            ) = student(
                images[2:],
                return_target=False,
                local_group_memory_inputs={"mem": student_mem},
            )

            ## Step 3. compute the three granular supervision losses, including instance,
            # local-group, group supervision losses
            weigts_sum, total_loss, granular_losses = 0.0, 0.0, OrderedDict()
            # instance loss
            loss_cls, loss_weight = (
                all_losses["instance-sup."],
                all_weights["instance-sup."],
            )
            if loss_weight > 0:
                instance_loss = loss_cls(
                    student_instance_target, teacher_instance_target, epoch
                )
                weigts_sum, total_loss = (
                    weigts_sum + loss_weight,
                    total_loss + instance_loss,
                )
                granular_losses["instance-sup."] = instance_loss.item()

            # local group loss
            loss_cls, loss_weight = (
                all_losses["local-group-sup."],
                all_weights["local-group-sup."],
            )
            if loss_weight > 0:
                local_group_loss = loss_cls(
                    student_local_group_target, teacher_local_group_target, epoch
                )
                weigts_sum, total_loss = (
                    weigts_sum + loss_weight,
                    total_loss + local_group_loss,
                )
                granular_losses["local-group-sup."] = local_group_loss.item()

            # group loss
            loss_cls, loss_weight = all_losses["group-sup."], all_weights["group-sup."]
            if loss_weight > 0:
                group_loss = loss_cls(student_group_target, teacher_group_target, epoch)
                weigts_sum, total_loss = (
                    weigts_sum + loss_weight,
                    total_loss + group_loss,
                )
                granular_losses["group-sup."] = group_loss.item()

            # average loss
            total_loss /= weigts_sum

            ## ## Step 4. update the memory buffer for local-group supervision losses.
            # for student, we only update memory by the image of size 224 and weak augmentations
            student_features = (student_memory_tokens.chunk(2))[0]
            len_weak = student_mem._dequeue_and_enqueue(
                student_features, 
                weak_aug_flags, 
            )

            teacher_weak = (teacher_memory_tokens.chunk(2))[0]
            _ = teacher_mem._dequeue_and_enqueue(teacher_weak, None)

        if not math.isfinite(total_loss.item()):
            print("Loss is {}, stopping training".format(total_loss.item()), force=True)
            sys.exit(1)

        ## Step 5. student and teacher update
        # student update
        optimizer.zero_grad()
        if fp16_scaler is None:
            total_loss.backward()
            if args.clip_grad:
                clip_grad = args.clip_grad
                if epoch > 100 and args.arch == "vit_large":
                    clip_grad = args.clip_grad / 10.0
                _ = clip_gradients(student, clip_grad)
            cancel_gradients_last_layer(epoch, student, args.freeze_last_layer)
            optimizer.step()
        else:
            fp16_scaler.scale(total_loss).backward()
            if args.clip_grad:
                clip_grad = args.clip_grad
                if epoch > 100 and args.arch == "vit_large":
                    clip_grad = args.clip_grad /10.0
                fp16_scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                _ = clip_gradients(student, clip_grad)
            cancel_gradients_last_layer(epoch, student, args.freeze_last_layer)
            fp16_scaler.step(optimizer)
            fp16_scaler.update()

        # EMA update for the teacher
        with torch.no_grad():
            m = momentum_schedule[it]  # momentum parameter
            for param_q, param_k in zip(
                student.module.backbone.parameters(),
                teacher_without_ddp.backbone.parameters(),
            ):
                param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)

            if teacher_without_ddp.instance_head is not None:
                for param_q, param_k in zip(
                    student.module.instance_head.parameters(),
                    teacher_without_ddp.instance_head.parameters(),
                ):
                    param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)

            if teacher_without_ddp.local_group_head is not None:
                for param_q, param_k in zip(
                    student.module.local_group_head.parameters(),
                    teacher_without_ddp.local_group_head.parameters(),
                ):
                    param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)

            if teacher_without_ddp.group_head is not None:
                for param_q, param_k in zip(
                    student.module.group_head.parameters(),
                    teacher_without_ddp.group_head.parameters(),
                ):
                    param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)

        ## Step 6. load images
        images, weak_aug_flags = prefetcher.next()
        epoch_it += 1

        ## Step 7. logging
        torch.cuda.synchronize()
        metric_logger.update(loss=total_loss.item())
        for loss_name, loss_value in granular_losses.items():
            metric_logger.update(**{loss_name: loss_value})
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(wd=optimizer.param_groups[0]["weight_decay"])

        if epoch_it % 500 == 0 and args.rank == 0:  # and epoch_it < 10:
            log_results = ""
            for _, loss_name in enumerate(all_losses):
                if all_weights[loss_name] > 0:
                    log_results += "%s: %.6f," % (
                        loss_name,
                        metric_logger.meters[loss_name].global_avg,
                    )
            logger.info(
                "%d-epoch (%d/%d): total loss %.6f, %s, lr %.4e, wd %.4e, weak aug. ratio %.1f"
                % (
                    epoch,
                    it,
                    len(data_loader),
                    metric_logger.meters["loss"].global_avg,
                    log_results,
                    optimizer.param_groups[0]["lr"],
                    optimizer.param_groups[0]["weight_decay"],
                    len_weak / len(weak_aug_flags) / args.world_size,
                )
            )

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


if __name__ == "__main__":
    parser = argparse.ArgumentParser("Mugs", parents=[get_args_parser()])
    args = parser.parse_args()
    if not os.path.exists(args.output_dir):
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)

    train_mugs(args)