File size: 17,393 Bytes
3c849be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
# Copyright 2022 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Misc functions.

Mostly copy-paste from torchvision references or other public repos like DETR and DINO:
https://github.com/facebookresearch/detr/blob/master/util/misc.py
https://github.com/facebookresearch/dino/blob/main/utils.py
"""
import datetime
import logging
import os
import subprocess
import sys
import time
from collections import defaultdict, deque

import numpy as np
import torch
import torch.distributed as dist
from torch import nn


def get_logger(file_path_name):
    """
    build a logger which both write on the desk and also on the terminal
    """
    logger = logging.getLogger()
    logger.setLevel("INFO")
    BASIC_FORMAT = "%(levelname)s:%(message)s"
    DATE_FORMAT = ""
    formatter = logging.Formatter(BASIC_FORMAT, DATE_FORMAT)
    chlr = logging.StreamHandler()
    chlr.setFormatter(formatter)
    chlr.setLevel("INFO")
    fhlr = logging.FileHandler(file_path_name)
    fhlr.setFormatter(formatter)
    logger.addHandler(chlr)
    logger.addHandler(fhlr)

    return logger


def restart_from_checkpoint(ckp_path, run_variables=None, **kwargs):
    """
    Re-start from checkpoint
    """
    if not os.path.isfile(ckp_path):
        return
    print("Found checkpoint at {}".format(ckp_path))

    # open checkpoint file
    checkpoint = torch.load(ckp_path, map_location="cpu")
    # key is what to look for in the checkpoint file
    # value is the object to load
    # example: {'state_dict': model}
    for key, value in kwargs.items():
        if key in checkpoint and value is not None:
            try:
                msg = value.load_state_dict(checkpoint[key], strict=False)
                print(
                    "=> loaded '{}' from checkpoint '{}' with msg {}".format(
                        key, ckp_path, msg
                    )
                )
            except TypeError:
                try:
                    msg = value.load_state_dict(checkpoint[key])
                    print("=> loaded '{}' from checkpoint: '{}'".format(key, ckp_path))
                except ValueError:
                    print(
                        "=> failed to load '{}' from checkpoint: '{}'".format(
                            key, ckp_path
                        )
                    )
        else:
            print("=> key '{}' not found in checkpoint: '{}'".format(key, ckp_path))

    # reload variable important for the run
    if run_variables is not None:
        for var_name in run_variables:
            if var_name in checkpoint:
                run_variables[var_name] = checkpoint[var_name]


def bool_flag(s):
    """
    Parse boolean arguments from the command line.
    """
    FALSY_STRINGS = {"off", "false", "0"}
    TRUTHY_STRINGS = {"on", "true", "1"}
    if s.lower() in FALSY_STRINGS:
        return False
    elif s.lower() in TRUTHY_STRINGS:
        return True
    else:
        raise argparse.ArgumentTypeError("invalid value for a boolean flag")


def fix_random_seeds(seed=31):
    """
    Fix random seeds.
    """
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)


def has_batchnorms(model):
    """
    judge whether a model has batch normalization
    """
    bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm)
    for name, module in model.named_modules():
        if isinstance(module, bn_types):
            return True
    return False


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.6f} ({global_avg:.6f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value,
        )


class MetricLogger(object):
    """
    build a Metric Logger
    """

    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError(
            "'{}' object has no attribute '{}'".format(type(self).__name__, attr)
        )

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append("{}: {}".format(name, str(meter)))
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ""
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt="{avg:.6f}")
        data_time = SmoothedValue(fmt="{avg:.6f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
        if torch.cuda.is_available():
            log_msg = self.delimiter.join(
                [
                    header,
                    "[{0" + space_fmt + "}/{1}]",
                    "eta: {eta}",
                    "{meters}",
                    "time: {time}",
                    "data: {data}",
                    "max mem: {memory:.0f}",
                ]
            )
        else:
            log_msg = self.delimiter.join(
                [
                    header,
                    "[{0" + space_fmt + "}/{1}]",
                    "eta: {eta}",
                    "{meters}",
                    "time: {time}",
                    "data: {data}",
                ]
            )
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB,
                        )
                    )
                else:
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                        )
                    )
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print(
            "{} Total time: {} ({:.6f} s / it)".format(
                header, total_time_str, total_time / len(iterable)
            )
        )


def get_sha():
    cwd = os.path.dirname(os.path.abspath(__file__))

    def _run(command):
        return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()

    sha = "N/A"
    diff = "clean"
    branch = "N/A"
    try:
        sha = _run(["git", "rev-parse", "HEAD"])
        subprocess.check_output(["git", "diff"], cwd=cwd)
        diff = _run(["git", "diff-index", "HEAD"])
        diff = "has uncommited changes" if diff else "clean"
        branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
    except Exception:
        pass
    message = f"sha: {sha}, status: {diff}, branch: {branch}"
    return message


def is_dist_avail_and_initialized():
    """
    judge whether distributed training is available and well-initialized
    """
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    """
    get the world size
    """
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    """
    get the rank
    """
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    """
    judge whether the current node is the master node
    """
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    """
    save checkpoint on the master node
    """
    if is_main_process():
        torch.save(*args, **kwargs)


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    import builtins as __builtin__

    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop("force", False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def init_distributed_ddpjob(args=None):
    """
    initialize the ddp job
    """
    if dist.is_available() and dist.is_initialized():
        return dist.get_world_size(), dist.get_rank()

    try:
        os.environ["MASTER_PORT"] = "40101"
        torch.distributed.init_process_group(backend="nccl")
    except Exception:
        world_size, rank = 1, 0
        print("distributed training not available")

    world_size = dist.get_world_size()
    rank = dist.get_rank()
    args.gpu = args.rank
    args.world_size, args.rank = world_size, rank
    return world_size, rank


def init_distributed_mode(args):
    """
    initialize the normal job
    """
    # launched with torch.distributed.launch
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ.get("LOCAL_RANK", 0))
        print(
            "args.rank",
            args.rank,
            "args.world_size",
            args.world_size,
            "args.gpu",
            args.gpu,
        )
        print("get_rank()", get_rank())
    # launched with submitit on a slurm cluster
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
        args.gpu = args.rank % torch.cuda.device_count()
    # launched naively with `python main_dino.py`
    # we manually add MASTER_ADDR and MASTER_PORT to env variables
    elif torch.cuda.is_available():
        print("Will run the code on one GPU.")
        args.rank, args.gpu, args.world_size = 0, 0, 1
        os.environ["MASTER_ADDR"] = "127.0.0.1"
        os.environ["MASTER_PORT"] = "2950"
    else:
        print("Does not support training without GPU.")
        sys.exit(1)

    os.environ["MASTER_PORT"] = "6542"

    dist.init_process_group(
        backend="nccl",
        init_method=args.dist_url,
        world_size=args.world_size,
        rank=args.rank,
    )

    torch.cuda.set_device(args.gpu)
    print(
        "| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True
    )
    dist.barrier()
    setup_for_distributed(args.rank == 0)


def accuracy(output, target, topk=(1,)):
    """
    Computes the accuracy over the k top predictions for the specified values of k
    """
    maxk = max(topk)
    batch_size = target.size(0)
    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.reshape(1, -1).expand_as(pred))
    return [correct[:k].reshape(-1).float().sum(0) * 100.0 / batch_size for k in topk]


def multi_scale(samples, model):
    """
    build a multi-scale features
    """
    v = None
    for s in [1, 1 / 2 ** (1 / 2), 1 / 2]:  # we use 3 different scales
        if s == 1:
            inp = samples.clone()
        else:
            inp = nn.functional.interpolate(
                samples, scale_factor=s, mode="bilinear", align_corners=False
            )
        feats = model.forward_knn(inp).clone()
        if v is None:
            v = feats
        else:
            v += feats
    v /= 3
    v /= v.norm()
    return v


class AllGather(torch.autograd.Function):
    """
    gather the variable on different nodes toghther
    """

    @staticmethod
    def forward(ctx, x):
        if (
            dist.is_available()
            and dist.is_initialized()
            and (dist.get_world_size() > 1)
        ):
            outputs = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
            dist.all_gather(outputs, x)
            return torch.cat(outputs, 0)
        return x

    @staticmethod
    def backward(ctx, grads):
        if (
            dist.is_available()
            and dist.is_initialized()
            and (dist.get_world_size() > 1)
        ):
            s = (grads.shape[0] // dist.get_world_size()) * dist.get_rank()
            e = (grads.shape[0] // dist.get_world_size()) * (dist.get_rank() + 1)
            grads = grads.contiguous()
            dist.all_reduce(grads)
            return grads[s:e]
        return grads


class AllReduce(torch.autograd.Function):
    """
    reduce the variable on different nodes toghther
    """

    @staticmethod
    def forward(ctx, x):
        if (
            dist.is_available()
            and dist.is_initialized()
            and (dist.get_world_size() > 1)
        ):
            x = x.contiguous() / dist.get_world_size()
            dist.all_reduce(x)
        return x

    @staticmethod
    def backward(ctx, grads):
        return grads


def load_pretrained_weights(
    model, pretrained_weights, checkpoint_key, model_name, patch_size
):
    if os.path.isfile(pretrained_weights):
        state_dict = torch.load(pretrained_weights, map_location="cpu")
        if checkpoint_key is not None and checkpoint_key in state_dict:
            print(f"Take key {checkpoint_key} in provided checkpoint dict")
            state_dict = state_dict[checkpoint_key]
        # remove `module.` prefix
        state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
        # remove `backbone.` prefix induced by multicrop wrapper
        state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
        # remove `encoder.` prefix induced by MAE
        state_dict = {k.replace("encoder.", ""): v for k, v in state_dict.items()}
        msg = model.load_state_dict(state_dict, strict=False)
        print(
            "Pretrained weights found at {} and loaded with msg: {}".format(
                pretrained_weights, msg
            )
        )
    else:
        print(
            "There is no reference weights available for this model => We use random weights."
        )


@torch.no_grad()
def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    tensors_gather = [
        torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
    ]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output