File size: 6,448 Bytes
55acd3a 5465e66 55acd3a a4ea4a8 55acd3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
<p align="center">
<a href='https://huggingface.co/spaces/zhichen'>
<img src='./images/logo.png'>
</a>
</p>
<div align="center">
<p align="center">
<h3> Qwen-WisdomVast (千问-智瀚)</h3>
<p align="center">
<a href='https://huggingface.co/zhichen'>
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Qwen%20WisdomVast-yellow'>
</a>
<a href='https://modelscope.cn/profile/seanzhang'>
<img src='https://img.shields.io/badge/🤖 ModelScope-Qwen%20WisdomVast-blue'>
</a>
<br>
<a href=href="https://github.com/seanzhang-zhichen/Qwen-WisdomVast/stargazers">
<img src="https://img.shields.io/github/stars/seanzhang-zhichen/Qwen-WisdomVast?color=ccf">
</a>
<a href="https://github.com/seanzhang-zhichen/Qwen-WisdomVast/blob/main/LICENSE">
<img alt="GitHub Contributors" src="https://img.shields.io/badge/license-Apache%202.0-blue.svg" />
</a>
</p>
</div>
## 介绍
**Qwen-WisdomVast**是**以Qwen1.5-7B为底座**,使用 [DORA](https://arxiv.org/pdf/2402.09353.pdf) + [LORA+](https://arxiv.org/pdf/2402.12354.pdf) 的训练方法,在100w高质量中文多轮SFT数据 + 20w英文多轮SFT数据 + 2000单轮自我认知数据训练而来的大模型,**数学能力**相比Qwen1.5-7B-Chat**提升了5.16%**,在**HumanEval**数据集上相比Qwen1.5-7B-Chat**提升了12.8**,在**MBPP**数据集上**提升了11.6%**,在**BBH**数据集上 **提升了12.44%** ,全部评测表现见下表。
**Github:**[https://github.com/seanzhang-zhichen/Qwen-WisdomVast](https://github.com/seanzhang-zhichen/Qwen-WisdomVast)
![DEMO](./images/image.png)
## 评测表现
| Model | MMLU | C-Eval | GSM8K | MATH | HumanEval | MBPP | BBH |
|-------------------|-------|--------|-------|-------|-----------|-------|-------|
| **Qwen1.5-7B-Chat** | 60.88 | 70.18 | 54.13 | 7.96 | 31.10 | 15.00 | 31.67 |
| **Qwen-WisdomVast** | 57.09 | **70.82** | 51.93 | **13.12** | **43.90** | **26.60** | **44.11** |
说明:
由于官方并未公布Qwen1.5-7B-Chat的评测表现,所以我们自己使用[opencompass](https://github.com/open-compass/opencompass)测试得到以上结果
Qwen-WisdomVast使用和Qwen1.5-7B-Chat一样的参数进行测试
## 模型下载
| Model | Download |
|:-------------------:|:-----------:|
| Qwen1.5-7B |[ 🤗 HuggingFace](https://huggingface.co/Qwen/Qwen1.5-7B) [ 🤖 ModelScope](https://modelscope.cn/models/qwen/Qwen1.5-7B)|
| Qwen-WisdomVast-Lora |[ 🤗 HuggingFace](https://huggingface.co/zhichen/Qwen-WisdomVast-Lora) [ 🤖 ModelScope](https://modelscope.cn/models/seanzhang/Qwen-WisdomVast-Lora)|
| Qwen-WisdomVast (合并好的模型) |[ 🤗 HuggingFace](https://huggingface.co/zhichen/Qwen-WisdomVast) [ 🤖 ModelScope](https://modelscope.cn/models/seanzhang/Qwen-WisdomVast)|
## 合并LORA模型(可跳过)
1、下载 [Qwen1.5-7B](https://modelscope.cn/models/qwen/Qwen1.5-7B)
```bash
git clone https://www.modelscope.cn/qwen/Qwen1.5-7B.git
```
2、下载[Qwen-WisdomVast-Lora](https://www.modelscope.cn/models/seanzhang/Qwen-WisdomVast-Lora)
**From ModelScope**
```bash
git lfs install
git clone https://www.modelscope.cn/seanzhang/Qwen-WisdomVast-Lora.git
```
**From HuggingFace**
```bash
git lfs install
git clone https://huggingface.co/zhichen/Qwen-WisdomVast-Lora
```
3、合并模型
```bash
python merge_lora.py \
--base_model path/to/qwen/Qwen1.5-7B \
--lora_model path/to/lora/Qwen-WisdomVast-Lora \
--output_dir ./Qwen-WisdomVast
```
## 下载 Qwen-WisdomVast(合并好的模型)
**From ModelScope**
```bash
git lfs install
git clone https://www.modelscope.cn/seanzhang/Qwen-WisdomVast.git
```
**From HuggingFace**
```bash
git lfs install
git clone https://huggingface.co/zhichen/Qwen-WisdomVast
```
## 命令行推理
```bash
python cli_demo.py --model_path ./Qwen-WisdomVast(换成你自己的合并后的模型路径)
```
## web 推理
```bash
python web_demo.py --model_path ./Qwen-WisdomVast(换成你自己的合并后的模型路径)
```
## vllm web 推理
1、使用[vllm](https://github.com/vllm-project/vllm)部署模型
```bash
python -m vllm.entrypoints.openai.api_server --served-model-name Qwen-WisdomVast --model ./Qwen-WisdomVast(换成你自己的合并后的模型路径)
```
2、在命令行执行
```bash
python vllm_web_demo.py --model Qwen-WisdomVast
```
## 复现测试结果
1、使用[vllm](https://github.com/vllm-project/vllm)部署`openai api server`
部署命令:
```bash
python -m vllm.entrypoints.openai.api_server --served-model-name Qwen-WisdomVast --model ./Qwen-WisdomVast(换成你自己的合并后的模型路径)
```
2、使用[opencompass](https://github.com/open-compass/opencompass)框架进行测试
参考:[使用opencompass验证模型效果](https://blog.csdn.net/qq_44193969/article/details/134979054)
按照以上文章修改好后,将`eval_qwen_wisdomvast.py`文件到 `opencompass/configs`文件夹下
3、执行测试脚本
```bash
python run.py configs/eval_qwen_wisdomvast.py -w outputs/Qwen-WisdomVast
```
## LICENSE
本项目仅可应用于研究目的,项目开发者不承担任何因使用本项目(包含但不限于数据、模型、代码等)导致的危害或损失。详细请参考[免责声明](https://github.com/seanzhang-zhichen/Qwen-WisdomVast/blob/main/DISCLAIMER)。
Qwen-WisdomVast项目代码的授权协议为 [The Apache License 2.0](.//LICENSE),代码可免费用做商业用途,模型权重和数据只能用于研究目的。请在产品说明中附加Qwen-WisdomVast的链接和授权协议。
## Citation
如果你在研究中使用了Qwen-WisdomVast,请按如下格式引用:
```latex
@misc{Qwen-WisdomVast,
title={Qwen-WisdomVast},
author={Zhichen Zhang, Weihan Huang},
year={2024},
howpublished={\url{https://github.com/seanzhang-zhichen/Qwen-WisdomVast}},
}
```
## Acknowledgement
[QwenLM/Qwen1.5](https://github.com/QwenLM/Qwen1.5)
<br>
[hiyouga/LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)
<br>
[shibing624/MedicalGPT](https://github.com/shibing624/MedicalGPT)
<br>
[modelscope/swift](https://github.com/modelscope/swift)
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=seanzhang-zhichen/Qwen-WisdomVast&type=Date)](https://star-history.com/#seanzhang-zhichen/Qwen-WisdomVast&Date) |