File size: 4,189 Bytes
1e3e623 11ddaf1 1e3e623 11ddaf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
library_name: transformers
tags:
- mergekit
- merge
base_model:
- recoilme/recoilme-gemma-2-9B-v0.4
- nbeerbower/Gemma2-Gutenberg-Doppel-9B
model-index:
- name: recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 76.15
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 43.94
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.34
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.19
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.31
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 36.84
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1
name: Open LLM Leaderboard
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [recoilme/recoilme-gemma-2-9B-v0.4](https://huggingface.co/recoilme/recoilme-gemma-2-9B-v0.4)
* [nbeerbower/Gemma2-Gutenberg-Doppel-9B](https://huggingface.co/nbeerbower/Gemma2-Gutenberg-Doppel-9B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: recoilme/recoilme-gemma-2-9B-v0.4
- model: nbeerbower/Gemma2-Gutenberg-Doppel-9B
merge_method: slerp
base_model: recoilme/recoilme-gemma-2-9B-v0.4
dtype: bfloat16
parameters:
t: 0.5
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_zelk12__recoilme-gemma-2-Gutenberg-Doppel-9B-v0.1)
| Metric |Value|
|-------------------|----:|
|Avg. |31.46|
|IFEval (0-Shot) |76.15|
|BBH (3-Shot) |43.94|
|MATH Lvl 5 (4-Shot)| 6.34|
|GPQA (0-shot) |12.19|
|MuSR (0-shot) |13.31|
|MMLU-PRO (5-shot) |36.84|
|