File size: 8,306 Bytes
a0806ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
# Copyright (c) 2024, Songlin Yang, Yu Zhang

# "HGRN2: Gated Linear RNNs with State Expansion"[https://arxiv.org/abs/2404.07904]

from __future__ import annotations

from typing import TYPE_CHECKING, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from fla.modules import RMSNorm, ShortConvolution
from fla.modules.activations import swish
from fla.modules.layernorm import rms_norm_linear
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla

if TYPE_CHECKING:
    from fla.models.utils import Cache


class HGRN2Attention(nn.Module):

    def __init__(
        self,
        mode: str = 'chunk',
        hidden_size: int = 1024,
        num_heads: Optional[int] = None,
        expand_ratio: Optional[int] = 128,
        use_short_conv: bool = False,
        conv_size: int = 4,
        conv_bias: bool = False,
        elementwise_affine: Optional[bool] = True,
        norm_eps: float = 1e-5,
        layer_idx: int = None
    ) -> HGRN2Attention:
        super().__init__()

        self.mode = mode
        self.hidden_size = hidden_size

        if expand_ratio is None and num_heads is not None:
            expand_ratio = hidden_size // num_heads
        elif expand_ratio is not None and num_heads is None:
            num_heads = hidden_size // expand_ratio
        elif expand_ratio is None and num_heads is None:
            raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
        self.num_heads = num_heads
        self.expand_ratio = expand_ratio

        self.use_short_conv = use_short_conv
        self.conv_size = conv_size
        self.conv_bias = conv_bias

        self.forget_dim = int(self.num_heads * self.expand_ratio)
        self.input_dim = hidden_size
        self.layer_idx = layer_idx

        assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
        assert self.forget_dim % num_heads == 0, f"forget dim must be divisible by num_heads of {num_heads}"
        assert self.input_dim % num_heads == 0, f"input dim must be divisible by num_heads of {num_heads}"

        self.head_f_dim = self.expand_ratio
        self.head_i_dim = self.hidden_size // num_heads

        self.q_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
        self.f_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
        self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)

        if use_short_conv:
            self.conv_size = conv_size
            self.q_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
            self.f_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
            self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)

        self.g_norm = RMSNorm(hidden_size=self.hidden_size, elementwise_affine=elementwise_affine, eps=norm_eps)
        self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)

        self.apply(self._initialize_weights)

    def _initialize_weights(self, module: nn.Module):
        if getattr(module, "_is_hf_initialized", False):
            return
        if isinstance(module, nn.Linear):
            nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        module._is_hf_initialized = True

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        lower_bound: Optional[torch.Tensor] = None,
        **kwargs
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
        if attention_mask is not None:
            assert len(attention_mask.shape) == 2, (
                "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
                "for padding purposes (0 indicating padding). "
                "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
            )

        # launching the triton kernel for just one token will actually be slower
        mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode

        last_state = None
        if past_key_values is not None and len(past_key_values) > self.layer_idx:
            last_state = past_key_values[self.layer_idx]

        if self.use_short_conv:
            conv_state_q, conv_state_f, conv_state_i = None, None, None
            if last_state is not None:
                conv_state_q, conv_state_f, conv_state_i = last_state['conv_state']
            conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
            q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
                                            mask=conv_mask,
                                            cache=conv_state_q,
                                            output_final_state=use_cache)
            f, conv_state_f = self.f_conv1d(x=self.f_proj(hidden_states),
                                            mask=conv_mask,
                                            cache=conv_state_f,
                                            output_final_state=use_cache)
            i, conv_state_i = self.i_conv1d(x=self.i_proj(hidden_states),
                                            mask=conv_mask,
                                            cache=conv_state_i,
                                            output_final_state=use_cache)
        else:
            q = self.q_proj(hidden_states)
            f = self.f_proj(hidden_states)
            i = self.i_proj(hidden_states)

        # dealing with left-padding
        if attention_mask is not None:
            i = i.mul_(attention_mask[:, -i.shape[-2]:, None])

        q = swish(q)

        # improve precision
        f = f.float()

        # the lower bound for the first layer is zero
        if lower_bound is None or self.layer_idx == 0:
            k, g = 1 - f.sigmoid(), F.logsigmoid(f)
        else:
            g = lower_bound + (1 - lower_bound) * f.sigmoid()
            k, g = 1 - g, g.log()

        q, k, i, g = map(lambda x: rearrange(x, '... (h d) -> ... h d', h=self.num_heads), (q, k.to(i), i, g))

        recurrent_state = last_state['recurrent_state'] if last_state is not None else None
        if mode == 'fused_recurrent':
            o, recurrent_state = fused_recurrent_gla(
                q=q,
                k=k,
                v=i,
                gk=g,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                head_first=False
            )
        elif mode == 'fused_chunk':
            o, recurrent_state = fused_chunk_gla(
                q=q,
                k=k,
                v=i,
                g=g,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                head_first=False
            )
        elif mode == 'chunk':
            o, recurrent_state = chunk_gla(
                q=q,
                k=k,
                v=i,
                g=g,
                initial_state=recurrent_state,
                output_final_state=use_cache,
                head_first=False
            )
        else:
            raise NotImplementedError(f"Not supported mode `{mode}`.")

        if past_key_values is not None:
            past_key_values.update(
                recurrent_state=recurrent_state,
                conv_state=(conv_state_q, conv_state_f, conv_state_i) if self.use_short_conv else None,
                layer_idx=self.layer_idx,
                offset=q.shape[2]
            )

        o = rearrange(o, '... h d -> ... (h d)')
        o = rms_norm_linear(o, self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
        return o, None, past_key_values

    def state_size(self, **kwargs) -> int:
        state_size = self.forget_dim * self.head_i_dim
        for module in self.children():
            if isinstance(module, ShortConvolution):
                state_size += module.state_size
        return state_size