File size: 4,084 Bytes
7c14524
a165f58
 
 
 
 
 
 
 
 
 
 
 
 
7c14524
a165f58
 
 
 
 
 
 
 
15cd21a
 
a165f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: mit
datasets:
- GAIR/lima
- OpenAssistant/oasst1
- databricks/databricks-dolly-15k
- cnn_dailymail
- ai2_arc
language:
- en
metrics:
- lhy/ranking_loss
library_name: transformers
pipeline_tag: text-generation
---
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{{ card_data }}
---

# Model Card for TSOTSALLM

TSOTSALLM is a large language Model Fine tuning from LLaMA 2 with 7B parameters. This model allow us to annotate automatically 
TSOTSATable in different task CEA, CTA, CPA ITD.. after annotate wiht use This LLM to generate the composition table.

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->


### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

## How to Get Started with the Model

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]


#### Training Hyperparameters

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->


#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

{{ testing_metrics | default("[More Information Needed]", true)}}

### Results

{{ results | default("[More Information Needed]", true)}}

#### Summary

{{ results_summary | default("", true) }}

## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

{{ model_examination | default("[More Information Needed]", true)}}

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).


## Technical Specifications [optional]

### Model Architecture and Objective

### Compute Infrastructure

#### Hardware

#### Software

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->


## More Information [optional]


## Model Card Authors [optional]

## Model Card Contact