Edit model card

emotions_flan_tf

This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4970
  • F1 Micro: 0.6980
  • F1 Macro: 0.6126
  • Accuracy: 0.2188

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy
0.8313 0.21 20 0.7916 0.4215 0.1586 0.0123
0.7813 0.41 40 0.7840 0.4717 0.2286 0.0201
0.7702 0.62 60 0.7485 0.4935 0.2379 0.0971
0.7218 0.83 80 0.6327 0.6045 0.3866 0.1256
0.6401 1.03 100 0.5907 0.6269 0.4310 0.1586
0.5951 1.24 120 0.5668 0.6459 0.4981 0.1502
0.5686 1.45 140 0.5458 0.6593 0.5372 0.1683
0.5576 1.65 160 0.5332 0.6675 0.5403 0.1722
0.5465 1.86 180 0.5224 0.6734 0.5667 0.1812
0.5436 2.07 200 0.5164 0.6807 0.5751 0.1877
0.5297 2.27 220 0.5149 0.6742 0.5793 0.1741
0.5109 2.48 240 0.5049 0.6845 0.5824 0.1929
0.5265 2.69 260 0.5070 0.6846 0.5859 0.1799
0.5028 2.89 280 0.5068 0.6847 0.5870 0.1864
0.5097 3.1 300 0.5025 0.6892 0.5940 0.2084
0.4971 3.31 320 0.5032 0.6843 0.5995 0.1890
0.4762 3.51 340 0.5069 0.6955 0.5928 0.2129
0.4811 3.72 360 0.4954 0.6898 0.5996 0.2026
0.5065 3.93 380 0.4961 0.6918 0.6038 0.1838
0.4746 4.13 400 0.4992 0.6956 0.6009 0.2142
0.4786 4.34 420 0.5013 0.6918 0.6018 0.2026
0.4832 4.55 440 0.4935 0.6904 0.6031 0.2155
0.465 4.75 460 0.4984 0.6938 0.6027 0.2071
0.4683 4.96 480 0.4977 0.6960 0.6011 0.2091
0.4573 5.17 500 0.4985 0.6915 0.6076 0.2006
0.4619 5.37 520 0.4952 0.6945 0.6044 0.2129
0.4535 5.58 540 0.4983 0.6927 0.6024 0.2078
0.4475 5.79 560 0.4967 0.6970 0.6064 0.2194
0.454 5.99 580 0.5027 0.6941 0.6090 0.1994
0.4479 6.2 600 0.4940 0.6919 0.6041 0.2117
0.4304 6.41 620 0.5002 0.6982 0.6114 0.2006
0.445 6.61 640 0.4970 0.6951 0.6098 0.2071
0.4434 6.82 660 0.4964 0.6976 0.6075 0.2136
0.4543 7.03 680 0.4904 0.6936 0.6086 0.2013
0.4474 7.24 700 0.4969 0.6960 0.6108 0.2071
0.4325 7.44 720 0.4998 0.7013 0.6123 0.2123
0.4362 7.65 740 0.4947 0.6953 0.6101 0.2091
0.4276 7.86 760 0.4978 0.6955 0.6119 0.2052
0.4392 8.06 780 0.4944 0.6967 0.6078 0.2104
0.4167 8.27 800 0.4987 0.6966 0.6080 0.2097
0.4309 8.48 820 0.4970 0.6980 0.6126 0.2188
0.42 8.68 840 0.4999 0.6977 0.6105 0.2129
0.423 8.89 860 0.5003 0.6975 0.6087 0.2142
0.4382 9.1 880 0.4977 0.6975 0.6115 0.2136
0.4182 9.3 900 0.4976 0.6981 0.6123 0.2155
0.4153 9.51 920 0.5000 0.6978 0.6108 0.2175
0.4277 9.72 940 0.5003 0.6982 0.6092 0.2168
0.4246 9.92 960 0.5000 0.6976 0.6093 0.2168

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for yunaseo/emotions_flan_tf

Adapter
(127)
this model