File size: 7,320 Bytes
dee531a
 
 
 
 
 
 
 
 
 
 
 
 
 
0fdb914
1b0223b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fdb914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
---
license: mit
language:
- en
pipeline_tag: text-classification
library_name: fasttext
tags:
- math
---


## Math classifier

We use `math-classifier` to retrieve math-related content from `fineweb-edu`, `dclm`, ... to upsample math-related content

```python
import json
import os
import time
from concurrent.futures import ProcessPoolExecutor, wait, ALL_COMPLETED
from time import sleep

import fasttext
import numpy as np
import pandas as pd
import pyarrow.parquet as pq
from tqdm import tqdm


def print_error(value):
    print("error: ", value)


def data_process(index, file, saved_dir):

    try:
        model_path = "math_score.bin"
        model = fasttext.load_model(model_path)

        # saved_dir: fineweb-edu/data/CC...-math/
        filename = file.split('/')[-1].replace('.parquet', '.jsonl')
        path90 = os.path.join(saved_dir, "09_10", filename)
        if os.path.exists(path90):
            print("exist", path90, flush=True)
            return

        sleep(index * 3)
        os.makedirs(saved_dir, exist_ok=True)

        label_list = []
        s67_list = []
        s78_list = []
        s89_list = []
        s90_list = []

        st = time.time()
        print("reading parquet", file, flush=True)
        df = pd.read_parquet(file)
        ed = time.time()
        print("read parquet time: ", ed - st, flush=True)
        for _, row_orginal in tqdm(
                df.iterrows(),
                total=len(df),
                position=index,
                desc=filename,
        ):
            row = row_orginal.to_dict()
            text = row['text'].replace('\n', ' ')

            pred = model.predict(text)
            label, score = pred[0][0], pred[1][0]
            label_list.append(pred)
            if label == '__label__positive':
                if 0.6 <= score < 0.7:
                    s67_list.append(row)
                if 0.7 <= score < 0.8:
                    s78_list.append(row)
                elif 0.8 <= score < 0.9:
                    s89_list.append(row)
                elif 0.9 <= score <= 1.0:
                    s90_list.append(row)
                else:
                    continue
    except Exception as e:
        print_error(e)
        return None

    os.makedirs(os.path.join(saved_dir, "labeled"), exist_ok=True)

    print("writing to file", flush=True)

    with open(
            os.path.join(saved_dir, "labeled",
                         filename.replace('.jsonl', '.txt')), 'w') as f:
        f.write("\n".join(str(pred) for pred in label_list))

    for dir_name in [ "07_08", "08_09", "09_10"]:
        os.makedirs(os.path.join(saved_dir, dir_name), exist_ok=True)

    with open(os.path.join(saved_dir, "06_07", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s67_list))

    with open(os.path.join(saved_dir, "07_08", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s78_list))

    with open(os.path.join(saved_dir, "08_09", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s89_list))

    with open(os.path.join(saved_dir, "09_10", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s90_list))

    return None


if __name__ == '__main__':

    num_process = 5
    start_time = time.time()
    file_paths = []
    base = "fineweb-edu/data/"

    coun=0
    for file_name in [
            'CC-MAIN-2017-04','CC-MAIN-2017-09','CC-MAIN-2017-13',
            'CC-MAIN-2017-17','CC-MAIN-2017-22','CC-MAIN-2017-26',
            'CC-MAIN-2017-30','CC-MAIN-2017-34','CC-MAIN-2017-39',
            'CC-MAIN-2017-43','CC-MAIN-2017-47','CC-MAIN-2017-51',

            "CC-MAIN-2018-05","CC-MAIN-2018-09","CC-MAIN-2018-13",
            "CC-MAIN-2018-17","CC-MAIN-2018-22","CC-MAIN-2018-26",
            "CC-MAIN-2018-30","CC-MAIN-2018-34","CC-MAIN-2018-39",
            "CC-MAIN-2018-43","CC-MAIN-2018-47","CC-MAIN-2018-51",

            "CC-MAIN-2019-04","CC-MAIN-2019-09","CC-MAIN-2019-13",
            "CC-MAIN-2019-18","CC-MAIN-2019-22","CC-MAIN-2019-26",
            "CC-MAIN-2019-30","CC-MAIN-2019-35","CC-MAIN-2019-39",
            "CC-MAIN-2019-43","CC-MAIN-2019-47","CC-MAIN-2019-51",

    ]:

        print("Walking:", file_name)
        original_file_path = base + file_name
        math_dir = original_file_path + "-math"
        print(math_dir)

        for root, dirs, files in os.walk(original_file_path):
            for file in files:
                if file.endswith(".parquet"):  # 只处理Parquet文件
                    file_path = os.path.abspath(os.path.join(root, file))
                    coun+=1
                    saved_dir = math_dir + "/" + file_path.split("/")[-1][:-8]
                    print(saved_dir)
                    file_paths.append((file_path, saved_dir))
    print(coun)
    print(len(lines))

    print("total file paths", len(file_paths))
    num_process = min(num_process, len(file_paths))
    print("num_process", num_process)

    futures = []
    with ProcessPoolExecutor(num_process) as executor:
        for index, (file_path, saved_dir) in enumerate(file_paths):
            futures.append(
                executor.submit(data_process, index % num_process, file_path,
                                saved_dir))
        done, not_done = wait(futures, return_when=ALL_COMPLETED)

    end_time = time.time()

    # 计算并打印所用时间
    elapsed_time = end_time - start_time
    print(f"Time taken: {elapsed_time} seconds")
    print("=" * 100)

```


## Related resources

- [Math classifier](https://huggingface.co/yulan-team/math-classifier)
- [Code classifier](https://huggingface.co/yulan-team/code-classifier)
- [Reasoning classifier](https://huggingface.co/yulan-team/reasoning-classifier)


---

## Contributing

We welcome any form of contribution, including feedback on model bad cases, feature suggestions, and example contributions. You can do so by submitting an [issue](https://github.com/RUC-GSAI/YuLan-Mini/issues).

## The Team

YuLan-Mini is developed and maintained by [AI Box, Renmin University of China](http://aibox.ruc.edu.cn/).

## License

- The code in this repository, the model weights, and optimizer states are released under the [MIT License](./LICENSE).
- Policies regarding the use of model weights, intermediate optimizer states, and training data will be announced in future updates.
- Limitations: Despite our efforts to mitigate safety concerns and encourage the generation of ethical and lawful text, the probabilistic nature of language models may still lead to unexpected outputs. For instance, responses might contain bias, discrimination, or other harmful content. Please refrain from disseminating such content. We are not liable for any consequences arising from the spread of harmful information.

## Citation

If you find YuLan-Mini helpful for your research or development, please cite [our technical report](https://arxiv.org/abs/2412.17743):


```
@article{hu2024yulan,
  title={YuLan-Mini: An Open Data-efficient Language Model},
  author={Hu, Yiwen and Song, Huatong and Deng, Jia and Wang, Jiapeng and Chen, Jie and Zhou, Kun and Zhu, Yutao and Jiang, Jinhao and Dong, Zican and Zhao, Wayne Xin and others},
  journal={arXiv preprint arXiv:2412.17743},
  year={2024}
}
```