Math classifier

We use math-classifier to retrieve math-related content from fineweb-edu, dclm, ... to upsample math-related content

import json
import os
import time
from concurrent.futures import ProcessPoolExecutor, wait, ALL_COMPLETED
from time import sleep

import fasttext
import numpy as np
import pandas as pd
import pyarrow.parquet as pq
from tqdm import tqdm


def print_error(value):
    print("error: ", value)


def data_process(index, file, saved_dir):

    try:
        model_path = "math_score.bin"
        model = fasttext.load_model(model_path)

        # saved_dir: fineweb-edu/data/CC...-math/
        filename = file.split('/')[-1].replace('.parquet', '.jsonl')
        path90 = os.path.join(saved_dir, "09_10", filename)
        if os.path.exists(path90):
            print("exist", path90, flush=True)
            return

        sleep(index * 3)
        os.makedirs(saved_dir, exist_ok=True)

        label_list = []
        s67_list = []
        s78_list = []
        s89_list = []
        s90_list = []

        st = time.time()
        print("reading parquet", file, flush=True)
        df = pd.read_parquet(file)
        ed = time.time()
        print("read parquet time: ", ed - st, flush=True)
        for _, row_orginal in tqdm(
                df.iterrows(),
                total=len(df),
                position=index,
                desc=filename,
        ):
            row = row_orginal.to_dict()
            text = row['text'].replace('\n', ' ')

            pred = model.predict(text)
            label, score = pred[0][0], pred[1][0]
            label_list.append(pred)
            if label == '__label__positive':
                if 0.6 <= score < 0.7:
                    s67_list.append(row)
                if 0.7 <= score < 0.8:
                    s78_list.append(row)
                elif 0.8 <= score < 0.9:
                    s89_list.append(row)
                elif 0.9 <= score <= 1.0:
                    s90_list.append(row)
                else:
                    continue
    except Exception as e:
        print_error(e)
        return None

    os.makedirs(os.path.join(saved_dir, "labeled"), exist_ok=True)

    print("writing to file", flush=True)

    with open(
            os.path.join(saved_dir, "labeled",
                         filename.replace('.jsonl', '.txt')), 'w') as f:
        f.write("\n".join(str(pred) for pred in label_list))

    for dir_name in [ "07_08", "08_09", "09_10"]:
        os.makedirs(os.path.join(saved_dir, dir_name), exist_ok=True)

    with open(os.path.join(saved_dir, "06_07", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s67_list))

    with open(os.path.join(saved_dir, "07_08", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s78_list))

    with open(os.path.join(saved_dir, "08_09", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s89_list))

    with open(os.path.join(saved_dir, "09_10", filename), 'w') as f:
        f.write("\n".join(json.dumps(line_now) for line_now in s90_list))

    return None


if __name__ == '__main__':

    num_process = 5
    start_time = time.time()
    file_paths = []
    base = "fineweb-edu/data/"

    coun=0
    for file_name in [
            'CC-MAIN-2017-04','CC-MAIN-2017-09','CC-MAIN-2017-13',
            'CC-MAIN-2017-17','CC-MAIN-2017-22','CC-MAIN-2017-26',
            'CC-MAIN-2017-30','CC-MAIN-2017-34','CC-MAIN-2017-39',
            'CC-MAIN-2017-43','CC-MAIN-2017-47','CC-MAIN-2017-51',

            "CC-MAIN-2018-05","CC-MAIN-2018-09","CC-MAIN-2018-13",
            "CC-MAIN-2018-17","CC-MAIN-2018-22","CC-MAIN-2018-26",
            "CC-MAIN-2018-30","CC-MAIN-2018-34","CC-MAIN-2018-39",
            "CC-MAIN-2018-43","CC-MAIN-2018-47","CC-MAIN-2018-51",

            "CC-MAIN-2019-04","CC-MAIN-2019-09","CC-MAIN-2019-13",
            "CC-MAIN-2019-18","CC-MAIN-2019-22","CC-MAIN-2019-26",
            "CC-MAIN-2019-30","CC-MAIN-2019-35","CC-MAIN-2019-39",
            "CC-MAIN-2019-43","CC-MAIN-2019-47","CC-MAIN-2019-51",

    ]:

        print("Walking:", file_name)
        original_file_path = base + file_name
        math_dir = original_file_path + "-math"
        print(math_dir)

        for root, dirs, files in os.walk(original_file_path):
            for file in files:
                if file.endswith(".parquet"):  # 只处理Parquet文件
                    file_path = os.path.abspath(os.path.join(root, file))
                    coun+=1
                    saved_dir = math_dir + "/" + file_path.split("/")[-1][:-8]
                    print(saved_dir)
                    file_paths.append((file_path, saved_dir))
    print(coun)
    print(len(lines))

    print("total file paths", len(file_paths))
    num_process = min(num_process, len(file_paths))
    print("num_process", num_process)

    futures = []
    with ProcessPoolExecutor(num_process) as executor:
        for index, (file_path, saved_dir) in enumerate(file_paths):
            futures.append(
                executor.submit(data_process, index % num_process, file_path,
                                saved_dir))
        done, not_done = wait(futures, return_when=ALL_COMPLETED)

    end_time = time.time()

    # 计算并打印所用时间
    elapsed_time = end_time - start_time
    print(f"Time taken: {elapsed_time} seconds")
    print("=" * 100)

Related resources


Contributing

We welcome any form of contribution, including feedback on model bad cases, feature suggestions, and example contributions. You can do so by submitting an issue.

The Team

YuLan-Mini is developed and maintained by AI Box, Renmin University of China.

License

  • The code in this repository, the model weights, and optimizer states are released under the MIT License.
  • Policies regarding the use of model weights, intermediate optimizer states, and training data will be announced in future updates.
  • Limitations: Despite our efforts to mitigate safety concerns and encourage the generation of ethical and lawful text, the probabilistic nature of language models may still lead to unexpected outputs. For instance, responses might contain bias, discrimination, or other harmful content. Please refrain from disseminating such content. We are not liable for any consequences arising from the spread of harmful information.

Citation

If you find YuLan-Mini helpful for your research or development, please cite our technical report:

@article{hu2024yulan,
  title={YuLan-Mini: An Open Data-efficient Language Model},
  author={Hu, Yiwen and Song, Huatong and Deng, Jia and Wang, Jiapeng and Chen, Jie and Zhou, Kun and Zhu, Yutao and Jiang, Jinhao and Dong, Zican and Zhao, Wayne Xin and others},
  journal={arXiv preprint arXiv:2412.17743},
  year={2024}
}
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including yulan-team/math-classifier