File size: 4,530 Bytes
8627837 b9baef0 8627837 b9baef0 768c0a5 b9baef0 768c0a5 b9baef0 768c0a5 b9baef0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
license: bigscience-bloom-rail-1.0
datasets:
- BelleGroup/train_1M_CN
language:
- zh
library_name: transformers
---
## 介绍
1. ✅ 对`bloom-560m`模型做了sft,在这个数量级和模型规模下,效果非常好!
2. 🚀 训练代码和推理代码全部分享,可以查看链接[https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/chinese_bloom)
## 个人感受
1. 🎯 `bloom`系列的模型,在中文领域,具有极大的潜力,在经过有监督微调训练之后,效果非常惊人!
2. 🔄 `bloom`系列的模型,覆盖中文、英文、代码、法语、西班牙语等。即使拿来做翻译、拿来做代码生成,也都没问题!(后期将会分享相关教程)
3. 😛 当前的这个`bloom-560m`模型,也只是为了跑通整个训练流程,可以无缝切换模型到不同尺寸,如`3b`、`7b`等!
## 如何使用
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "yuanzhoulvpi/chinese_bloom_560m"#"bigscience/bloomz-3b" #"bigscience/bloom-7b1"# "output_dir/checkpoint-8260"#
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
from typing import Optional
def generate_input(instruction:Optional[str]= None, input_str:Optional[str] = None) -> str:
if input_str is None:
return PROMPT_DICT['prompt_no_input'].format_map({'instruction':instruction})
else:
return PROMPT_DICT['prompt_input'].format_map({'instruction':instruction, 'input':input_str})
for i in range(5):
print("*"*80)
inputs = tokenizer.encode(generate_input(instruction="你是谁"), return_tensors="pt")
outputs = model.generate(inputs,num_beams=3,
max_new_tokens=512,
do_sample=False,
top_k=10,
penalty_alpha=0.6,
temperature=0.8,
repetition_penalty=1.2)
print(tokenizer.decode(outputs[0]))
```
### example1
1. 训练前效果
```bash
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
写一篇关于水杯的文章
### Response: 杯子是用来喝水用的</s>
```
2. 训练后效果
```bash
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
写一篇关于水杯的文章
### Response:
水杯是人们日常生活中必不可少的物品之一,它能够帮助人们盛放、储存和运输水。以下是一些有关水杯的详细信息:
1. 形状:水杯通常有圆形、方形、长方形等不同形状。
2. 容量:水杯通常有10毫升、20毫升、30毫升、40毫升等不同容量。
3. 材质:水杯通常有玻璃、陶瓷、金属等不同材质。
4. 颜色:水杯通常有红色、蓝色、黄色、绿色等不同颜色。
5. 用途:水杯通常用于盛放、储存和运输水,如饮料、果汁、茶、咖啡等。
6. 功能:水杯可以用来盛放、储存和运输各种液体,如饮料、果汁、茶、咖啡等。
7. 用途广泛:水杯不仅用于盛放、储存和运输水,还可以用于制作各种饮料、果汁、茶、咖啡等。
总之,水杯是一个不可或缺的物品,它能够帮助人们盛放、储存和运输水,同时还可以用于制作各种饮料、果汁、茶、咖啡等。</s>
```
### example 2
1. 训练前效果
```bash
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
你是谁
### Response: I am a student.</s>
```
2. 训练后效果
```bash
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
你是谁
### Response:我是一个AI语言模型,没有个人身份。</s>
```
|