File size: 4,514 Bytes
d8e4748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7840841
d8e4748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926cd4f
d8e4748
 
 
 
b3311ed
d8e4748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926cd4f
d8e4748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
license: cc-by-4.0
datasets:
- Open-Orca/OpenOrca
- Intel/orca_dpo_pairs
language:
- en
tags:
- xDAN-AI
- OpenOrca
- DPO
- Self-Think
---

<div style="display: flex; justify-content: center; align-items: center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/643197ac288c9775673a01e9/tVAcwKkIH5vkfzqgqHeHi.png" style="width: 45%;">
</div
>


<p align="center">
  <big><b>Top 1 Performer on MT-bench🏆</b
></big>
</p>

<p align="center">
  <strong>**The first top-performing 7b model at Humanities, Coding and Writing.**</strong>
</p>

<p
 align="center"
  <a href="The TOP1 MT-Bench Model">xDAN-AI</a>>
  <a href="https://discord.gg/7NrMX5AK">Discord</a>
  <a href="https://twitter.com/shootime007">Twitter</a><a href="https://huggingface.co/xDAN-AI">Huggingface</a>
</p>

<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/643197ac288c9775673a01e9/QANDZApzpTHM6sBsjmdew.png" alt="Image" width="50%">
</p>



## Outperforms GPT-3.5-turbo & Claude-v1

![image/png
](https://cdn-uploads.huggingface.co/production/uploads/643197ac288c9775673a01e9/c9btBdopOpM06VuBsvRxq.png)

## Approaches GPT-4 on MT-Bench

![image/png](https://cdn-uploads.huggingface.co/production/uploads/643197ac288c9775673a01e9/QhcLDoOGZznkvy0v4FsUY.png)


**########## First turn ##########**
| model              | turn | score    | size
|--------------------|------|----------|--------
| gpt-4              | 1    | 8.95625  |  -
| **xDAN-L1-Chat-RL-v1** | 1    | **8.87500**  |  **7b**
| xDAN-L2-Chat-RL-v2 | 1    | 8.78750  |  30b
| claude-v1          | 1    | 8.15000  |  -
| gpt-3.5-turbo      | 1    | 8.07500  |  20b
| vicuna-33b-v1.3    | 1    | 7.45625  |  33b
| wizardlm-30b       | 1    | 7.13125  |  30b
| oasst-sft-7-llama-30b | 1 | 7.10625  |  30b
| Llama-2-70b-chat   | 1    | 6.98750  |  70b


########## Second turn ##########
| model              | turn | score     | size
|--------------------|------|-----------|--------
| gpt-4              | 2    | 9.025000  |  -
| xDAN-L2-Chat-RL-v2 | 2    | 8.087500  |  30b
| **xDAN-L1-Chat-RL-v1** | 2   | **7.825000**  |   **7b**
| gpt-3.5-turbo      | 2    | 7.812500  |  20b
| claude-v1          | 2    | 7.650000  |  -
| wizardlm-30b       | 2    | 6.887500  |  30b
| vicuna-33b-v1.3    | 2    | 6.787500  |  33b
| Llama-2-70b-chat   | 2    | 6.725000  |  70b

########## Average turn##########
| model              | score     | size
|--------------------|-----------|--------
| gpt-4              | 8.990625  |  -
| xDAN-L2-Chat-RL-v2 | 8.437500  |  30b
| **xDAN-L1-Chat-RL-v1** | **8.350000**  |  **7b**
| gpt-3.5-turbo      | 7.943750  |  20b
| claude-v1          | 7.900000  |  -
| vicuna-33b-v1.3    | 7.121875  |  33b
| wizardlm-30b       | 7.009375  |  30b
| Llama-2-70b-chat   | 6.856250  |  70b


## LM-Evaluation-Harness

| Task         | Score  |
|--------------|--------|
| Average | 68.38  |
| ARC     | 66.3  |
| HellaSwag        | 85.81  |
| MMLU    | 63.21  |
| TruthfulQA   | 56.7   |
| Winogrande         | 78.85  |
| GSM8K   | 59.44  |




### Prompt Template: Alpaca
You are a helpful assistant named DAN. You are an expert in worldly knowledge, skilled in employing a probing questioning strategy, 
and you carefully consider each step before providing answers. 
\n\n### Instruction:\n{instruction}\n\n### Response:


### Dataset:
1. Selected from OpenOrca
2. Intel Orca-DPO-Pairs
3. Privately Crafted Dataset

### Training:
1. SFT with Mixed dataset from OpenOrca & Intel
2. The DPO-v2 dataset  
3. The DPO-v2 Trainer

## Created By xDAN-AI at 2023-12-15
## Eval by FastChat: https://github.com/lm-sys/FastChat.git

 
## Disclaimer
We employ rigorous data compliance validation algorithms throughout the training of our language model to ensure the highest level of compliance. However, due to the intricate nature of data and the wide range of potential usage scenarios for the model, we cannot guarantee that it will consistently produce accurate and sensible outputs. Users should be aware of the possibility of the model generating problematic results. Our organization disclaims any responsibility for risks or issues arising from misuse, improper guidance, unlawful usage, misinformation, or subsequent concerns regarding data security.

## About xDAN-AI
xDAN-AI represents the forefront of Silicon-Based Life Factory technology. For comprehensive information and deeper insights into our cutting-edge technology and offerings, please visit our website: https://www.xdan.ai.