File size: 27,636 Bytes
87c126b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 |
"""
https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L30
"""
import copy
from matplotlib import pyplot as plt
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
from typing import Any
import einops
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
from guided_diffusion.gaussian_diffusion import ModelMeanType
from ldm.modules.encoders.modules import FrozenClipImageEmbedder, TextEmbedder, FrozenCLIPTextEmbedder
import dnnlib
from dnnlib.util import requires_grad
from dnnlib.util import calculate_adaptive_weight
from ..train_util_diffusion import TrainLoop3DDiffusion
from ..cvD.nvsD_canoD import TrainLoop3DcvD_nvsD_canoD
from guided_diffusion.continuous_diffusion_utils import get_mixed_prediction, different_p_q_objectives, kl_per_group_vada, kl_balancer
# from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
# from .controlLDM import TrainLoop3DDiffusionLSGM_Control # joint diffusion and rec class
from .train_util_diffusion_lsgm_noD_joint import TrainLoop3DDiffusionLSGMJointnoD # joint diffusion and rec class
__conditioning_keys__ = {
'concat': 'c_concat',
'crossattn': 'c_crossattn',
'adm': 'y'
}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class TrainLoop3DDiffusionLSGM_crossattn(TrainLoop3DDiffusionLSGMJointnoD):
def __init__(self,
*,
rec_model,
denoise_model,
diffusion,
sde_diffusion,
control_model,
control_key,
only_mid_control,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
resume_cldm_checkpoint=None,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
normalize_clip_encoding=False,
scale_clip_encoding=1.0,
cfg_dropout_prob=0.,
cond_key='img_sr',
**kwargs):
super().__init__(rec_model=rec_model,
denoise_model=denoise_model,
diffusion=diffusion,
sde_diffusion=sde_diffusion,
control_model=control_model,
control_key=control_key,
only_mid_control=only_mid_control,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
resume_cldm_checkpoint=resume_cldm_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
ignore_resume_opt=ignore_resume_opt,
freeze_ae=freeze_ae,
denoised_ae=denoised_ae,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
**kwargs)
self.conditioning_key = 'c_crossattn'
self.cond_key = cond_key
self.instantiate_cond_stage(normalize_clip_encoding,
scale_clip_encoding, cfg_dropout_prob)
requires_grad(self.rec_model, False)
self.rec_model.eval()
# self.normalize_clip_encoding = normalize_clip_encoding
# self.cfg_dropout_prob = cfg_dropout_prob
def instantiate_cond_stage(self, normalize_clip_encoding,
scale_clip_encoding, cfg_dropout_prob):
# https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/diffusion/ddpm.py#L509C1-L509C46
# self.cond_stage_model.train = disabled_train # type: ignore
# st()
if self.cond_key == 'caption': # for objaverse training (with extracted cap3d caption)
self.cond_txt_model = TextEmbedder(dropout_prob=cfg_dropout_prob)
else: # zero-shot Text to 3D using normalized clip latent
self.cond_stage_model = FrozenClipImageEmbedder(
'ViT-L/14',
dropout_prob=cfg_dropout_prob,
normalize_encoding=normalize_clip_encoding,
scale_clip_encoding=scale_clip_encoding)
self.cond_stage_model.freeze()
self.cond_txt_model = FrozenCLIPTextEmbedder(
dropout_prob=cfg_dropout_prob,
scale_clip_encoding=scale_clip_encoding)
self.cond_txt_model.freeze()
@th.no_grad()
def get_c_input(self,
batch,
bs=None,
use_text=False,
prompt="",
*args,
**kwargs):
# using clip to transform control to tokens for crossattn
cond_inp = None
if self.cond_key == 'caption':
c = self.cond_txt_model(
cond_inp, train=self.ddpm_model.training
) # ! SD training text condition injection layer
# st() # check whether context repeat?
else: # zero shot
if use_text: # for test
assert prompt != ""
c = self.cond_txt_model.encode(prompt) # ! for test
# st()
else:
cond_inp = batch[self.cond_key]
if bs is not None:
cond_inp = cond_inp[:bs]
cond_inp = cond_inp.to(
memory_format=th.contiguous_format).float()
c = self.cond_stage_model(cond_inp) # BS 768
# return dict(c_concat=[control])
# return dict(c_crossattn=[c], c_concat=[control])
# return dict(__conditioning_keys__[self.cond_key]=)
# return {self.conditioning_key: [c], 'c_concat': [cond_inp]}
return {self.conditioning_key: c, 'c_concat': [cond_inp]}
# TODO, merge the APIs
def apply_model_inference(self, x_noisy, t, c, model_kwargs={}):
pred_params = self.ddp_ddpm_model(
x_noisy, t, **{
**model_kwargs, 'context': c['c_crossattn']
})
return pred_params
def apply_model(self, p_sample_batch, cond, model_kwargs={}):
return super().apply_model(
p_sample_batch, **{
**model_kwargs, 'context': cond['c_crossattn']
})
def run_step(self, batch, step='ldm_step'):
# if step == 'diffusion_step_rec':
if step == 'ldm_step':
self.ldm_train_step(batch)
# if took_step_ddpm:
# self._update_cldm_ema()
self._anneal_lr()
self.log_step()
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
# dist_util.synchronize()
batch = next(self.data)
self.run_step(batch, step='ldm_step')
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
# if self.step % self.eval_interval == 0 and self.step != 0:
if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
# self.eval_ddpm_sample()
# self.eval_cldm(use_ddim=True, unconditional_guidance_scale=7.5, prompt="") # during training, use image as condition
self.eval_cldm(use_ddim=False,
prompt="") # fix condition bug first
# if self.sde_diffusion.args.train_vae:
# self.eval_loop()
th.cuda.empty_cache()
dist_util.synchronize()
if self.step % self.save_interval == 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer, self.mp_trainer.model_name)
# if self.sde_diffusion.args.train_vae:
# self.save(self.mp_trainer_rec,
# self.mp_trainer_rec.model_name)
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save(self.mp_trainer,
self.mp_trainer.model_name) # rec and ddpm all fixed.
# st()
# self.save(self.mp_trainer_canonical_cvD, 'cvD')
# ddpm + rec loss
def ldm_train_step(self, batch, behaviour='cano', *args, **kwargs):
"""
add sds grad to all ae predicted x_0
"""
# ! enable the gradient of both models
requires_grad(self.ddpm_model, True)
self.mp_trainer.zero_grad() # !!!!
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k:
v[i:i + self.microbatch].to(dist_util.dev()) if isinstance(
v, th.Tensor) else v
for k, v in batch.items()
}
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer.use_amp):
loss = th.tensor(0.).to(dist_util.dev())
vae_out = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
behaviour='encoder_vae',
) # pred: (B, 3, 64, 64)
eps = vae_out[self.latent_name]
# eps = vae_out.pop(self.latent_name)
if 'bg_plane' in vae_out:
eps = th.cat((eps, vae_out['bg_plane']),
dim=1) # include background, B 12+4 32 32
p_sample_batch = self.prepare_ddpm(eps)
cond = self.get_c_input(micro)
# ! running diffusion forward
ddpm_ret = self.apply_model(p_sample_batch, cond)
if self.sde_diffusion.args.p_rendering_loss:
target = micro
pred = self.ddp_rec_model(
# latent=vae_out,
latent={
# **vae_out,
self.latent_name: ddpm_ret['pred_x0_p'],
'latent_name': self.latent_name
},
c=micro['c'],
behaviour=self.render_latent_behaviour)
# vae reconstruction loss
with self.ddp_control_model.no_sync(): # type: ignore
p_vae_recon_loss, rec_loss_dict = self.loss_class(
pred, target, test_mode=False)
log_rec3d_loss_dict(rec_loss_dict)
# log_rec3d_loss_dict(
# dict(p_vae_recon_loss=p_vae_recon_loss, ))
loss = p_vae_recon_loss + ddpm_ret[
'p_eps_objective'] # TODO, add obj_weight_t_p?
else:
loss = ddpm_ret['p_eps_objective'].mean()
# =====================================================================
self.mp_trainer.backward(loss) # joint gradient descent
# update ddpm accordingly
self.mp_trainer.optimize(self.opt)
if dist_util.get_rank() == 0 and self.step % 500 == 0:
self.log_control_images(vae_out, p_sample_batch, micro, ddpm_ret)
@th.inference_mode()
def log_control_images(self, vae_out, p_sample_batch, micro, ddpm_ret):
eps_t_p, t_p, logsnr_p = (p_sample_batch[k] for k in (
'eps_t_p',
't_p',
'logsnr_p',
))
pred_eps_p = ddpm_ret['pred_eps_p']
vae_out.pop('posterior') # for calculating kl loss
vae_out_for_pred = {
k: v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v
for k, v in vae_out.items()
}
pred = self.ddp_rec_model(latent=vae_out_for_pred,
c=micro['c'][0:1],
behaviour=self.render_latent_behaviour)
assert isinstance(pred, dict)
pred_img = pred['image_raw']
gt_img = micro['img']
if 'depth' in micro:
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
else:
gt_depth = th.zeros_like(gt_img[:, 0:1, ...])
if 'image_depth' in pred:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
else:
pred_depth = th.zeros_like(gt_depth)
gt_img = self.pool_128(gt_img)
gt_depth = self.pool_128(gt_depth)
# cond = self.get_c_input(micro)
# hint = th.cat(cond['c_concat'], 1)
gt_vis = th.cat(
[
gt_img,
gt_img,
gt_img,
# self.pool_128(hint),
# gt_img,
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
# eps_t_p_3D = eps_t_p.reshape(batch_size, eps_t_p.shape[1]//3, 3, -1) # B C 3 L
if 'bg_plane' in vae_out:
noised_latent = {
'latent_normalized_2Ddiffusion':
eps_t_p[0:1, :12] * self.triplane_scaling_divider,
'bg_plane':
eps_t_p[0:1, 12:16] * self.triplane_scaling_divider,
}
else:
noised_latent = {
'latent_normalized_2Ddiffusion':
eps_t_p[0:1] * self.triplane_scaling_divider,
}
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=noised_latent,
# latent=eps_t_p[0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically
behaviour=self.render_latent_behaviour)
pred_x0 = self.sde_diffusion._predict_x0_from_eps(
eps_t_p, pred_eps_p, logsnr_p) # for VAE loss, denosied latent
if 'bg_plane' in vae_out:
denoised_latent = {
'latent_normalized_2Ddiffusion':
pred_x0[0:1, :12] * self.triplane_scaling_divider,
'bg_plane':
pred_x0[0:1, 12:16] * self.triplane_scaling_divider,
}
else:
denoised_latent = {
'latent_normalized_2Ddiffusion':
pred_x0[0:1] * self.triplane_scaling_divider,
}
# pred_xstart_3D
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent=denoised_latent,
# latent=pred_x0[0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
pred_vis = th.cat(
[
self.pool_128(img) for img in (
pred_img[0:1],
noised_ae_pred['image_raw'][0:1],
denoised_ae_pred['image_raw'][0:1], # controlnet result
pred_depth[0:1].repeat_interleave(3, dim=1))
],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis],
dim=-2)[0].permute(1, 2,
0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
)
if self.cond_key == 'caption':
with open(
f'{logger.get_dir()}/{self.step+self.resume_step}caption_{t_p[0].item():3}.txt',
'w') as f:
f.write(micro['caption'][0])
print(
'log denoised vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t_p[0].item():3}.jpg'
)
th.cuda.empty_cache()
@th.inference_mode()
def eval_cldm(self,
prompt="",
use_ddim=False,
unconditional_guidance_scale=1.0,
save_img=False,
use_train_trajectory=False,
export_mesh=False,
camera=None,
overwrite_diff_inp_size=None):
self.ddpm_model.eval()
args = dnnlib.EasyDict(
dict(
batch_size=self.batch_size,
image_size=self.diffusion_input_size,
denoise_in_channels=self.rec_model.decoder.triplane_decoder.
out_chans, # type: ignore
clip_denoised=False,
class_cond=False,
use_ddim=use_ddim))
model_kwargs = {}
if args.class_cond:
classes = th.randint(low=0,
high=NUM_CLASSES,
size=(args.batch_size, ),
device=dist_util.dev())
model_kwargs["y"] = classes
diffusion = self.diffusion
sample_fn = (diffusion.p_sample_loop
if not args.use_ddim else diffusion.ddim_sample_loop)
extra_kwargs = {}
if args.use_ddim:
extra_kwargs.update(
dict(
unconditional_guidance_scale=unconditional_guidance_scale))
# for i, batch in enumerate(tqdm(self.eval_data)):
# if use_train_trajectory:
# batch = next(iter(self.data))
# else:
# batch = next(iter(self.eval_data))
# st() # th.save(batch['c'].cpu(), 'assets/shapenet_eval_pose.pt')
assert camera is not None # for evaluation
batch = {'c': camera.clone()}
# st()
# use the first frame as the condition now
novel_view_cond = {
k:
v[0:1].to(dist_util.dev()) if isinstance(v, th.Tensor) else v[0:1]
# micro['img'].shape[0], 0)
for k, v in batch.items()
}
cond = self.get_c_input(novel_view_cond,
use_text=prompt != "",
prompt=prompt) # use specific prompt for debug
# broadcast to args.batch_size
cond = {
k: cond_v.repeat_interleave(args.batch_size, 0)
for k, cond_v in cond.items() if k == self.conditioning_key
}
for i in range(1):
# st()
noise_size = (
args.batch_size,
self.ddpm_model.in_channels,
self.diffusion_input_size if not overwrite_diff_inp_size else int(overwrite_diff_inp_size),
self.diffusion_input_size if not overwrite_diff_inp_size else int(overwrite_diff_inp_size)
)
triplane_sample = sample_fn(
self,
noise_size,
cond=cond,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
mixing_normal=True, # !
device=dist_util.dev(),
**extra_kwargs)
# triplane_sample = th.zeros((args.batch_size, self.ddpm_model.in_channels, self.diffusion_input_size, self.diffusion_input_size), device=dist_util.dev())
th.cuda.empty_cache()
for sub_idx in range(triplane_sample.shape[0]):
self.render_video_given_triplane(
triplane_sample[sub_idx:sub_idx + 1],
self.rec_model, # compatible with join_model
name_prefix=f'{self.step + self.resume_step}_{i+sub_idx}',
save_img=save_img,
render_reference=batch,
# render_reference=None,
export_mesh=export_mesh,
render_all=True,
)
del triplane_sample
th.cuda.empty_cache()
self.ddpm_model.train()
@th.inference_mode()
# def eval_loop(self, c_list:list):
def eval_novelview_loop(self, rec_model):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
novel_view_micro = {}
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
# for i in range(0, 8, self.microbatch):
# c = c_list[i].to(dist_util.dev()).reshape(1, -1)
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
if i == 0:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in batch.items()
}
torchvision.utils.save_image(
self.pool_128(novel_view_micro['img']),
logger.get_dir() + '/FID_Cals/gt.png',
normalize=True,
val_range=(0, 1),
padding=0)
else:
# if novel_view_micro['c'].shape[0] < micro['img'].shape[0]:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in novel_view_micro.items()
}
th.manual_seed(0) # avoid vae re-sampling changes results
pred = rec_model(img=novel_view_micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
# ! move to other places, add tensorboard
# pred_vis = th.cat([
# pred['image_raw'],
# -pred['image_depth'].repeat_interleave(3, dim=1)
# ],
# dim=-1)
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
# ! save
pooled_depth = self.pool_128(pred_depth).repeat_interleave(3,
dim=1)
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
pooled_depth,
],
dim=-1) # B, 3, H, W
# ! save depth
name_prefix = i
torchvision.utils.save_image(self.pool_128(pred['image_raw']),
logger.get_dir() +
'/FID_Cals/{}.png'.format(i),
normalize=True,
val_range=(0, 1),
padding=0)
torchvision.utils.save_image(self.pool_128(pooled_depth),
logger.get_dir() +
'/FID_Cals/{}_depth.png'.format(i),
normalize=True,
val_range=(0, 1),
padding=0)
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
del video_out
# del pred_vis
# del pred
th.cuda.empty_cache()
|