Back to all models
text-classification mask_token: <mask>
Query this model
πŸ”₯ This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚑️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
last 30 days



Contributed by

ynie Yixin Nie
6 models

How to use this model directly from the πŸ€—/transformers library:

Copy to clipboard
from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli") model = AutoModelForSequenceClassification.from_pretrained("ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli")

This is a strong pre-trained RoBERTa-Large NLI model.

The training data is a combination of well-known NLI datasets: SNLI, MNLI, FEVER-NLI, ANLI (R1, R2, R3). Other pre-trained NLI models including RoBERTa, ALBert, BART, ELECTRA, XLNet are also available.

Trained by Yixin Nie, original source.

Try the code snippet below.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

if __name__ == '__main__':
    max_length = 256

    premise = "Two women are embracing while holding to go packages."
    hypothesis = "The men are fighting outside a deli."

    hg_model_hub_name = "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli"

    tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name)
    model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name)

    tokenized_input_seq_pair = tokenizer.encode_plus(premise, hypothesis,
                                                     return_token_type_ids=True, truncation=True)

    input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0)
    # remember bart doesn't have 'token_type_ids', remove the line below if you are using bart.
    token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0)
    attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0)

    outputs = model(input_ids,
    # Note:
    # "id2label": {
    #     "0": "entailment",
    #     "1": "neutral",
    #     "2": "contradiction"
    # },

    predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()  # batch_size only one

    print("Premise:", premise)
    print("Hypothesis:", hypothesis)
    print("Entailment:", predicted_probability[0])
    print("Neutral:", predicted_probability[1])
    print("Contradiction:", predicted_probability[2])

More in here.


    title = "Adversarial {NLI}: A New Benchmark for Natural Language Understanding",
    author = "Nie, Yixin  and
      Williams, Adina  and
      Dinan, Emily  and
      Bansal, Mohit  and
      Weston, Jason  and
      Kiela, Douwe",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    year = "2020",
    publisher = "Association for Computational Linguistics",