Edit model card

This is a strong pre-trained RoBERTa-Large NLI model.

The training data is a combination of well-known NLI datasets: SNLI, MNLI, FEVER-NLI, ANLI (R1, R2, R3).
Other pre-trained NLI models including RoBERTa, ALBert, BART, ELECTRA, XLNet are also available.

Trained by Yixin Nie, original source.

Try the code snippet below.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

if __name__ == '__main__':
    max_length = 256

    premise = "Two women are embracing while holding to go packages."
    hypothesis = "The men are fighting outside a deli."

    hg_model_hub_name = "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli"
    # hg_model_hub_name = "ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli"

    tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name)
    model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name)

    tokenized_input_seq_pair = tokenizer.encode_plus(premise, hypothesis,
                                                     return_token_type_ids=True, truncation=True)

    input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0)
    # remember bart doesn't have 'token_type_ids', remove the line below if you are using bart.
    token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0)
    attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0)

    outputs = model(input_ids,
    # Note:
    # "id2label": {
    #     "0": "entailment",
    #     "1": "neutral",
    #     "2": "contradiction"
    # },

    predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist()  # batch_size only one

    print("Premise:", premise)
    print("Hypothesis:", hypothesis)
    print("Entailment:", predicted_probability[0])
    print("Neutral:", predicted_probability[1])
    print("Contradiction:", predicted_probability[2])

More in here.


    title = "Adversarial {NLI}: A New Benchmark for Natural Language Understanding",
    author = "Nie, Yixin  and
      Williams, Adina  and
      Dinan, Emily  and
      Bansal, Mohit  and
      Weston, Jason  and
      Kiela, Douwe",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    year = "2020",
    publisher = "Association for Computational Linguistics",
Downloads last month

Datasets used to train ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

Space using ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli 1