Edit model card

torgo_xlsr_finetune-M03-2

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2376
  • Wer: 0.5541

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Wer
23.6177 0.92 500 3.4289 1.0
3.4209 1.85 1000 21.5765 1.0
3.1586 2.77 1500 2.8397 1.0
2.7993 3.69 2000 2.7192 1.2867
2.644 4.61 2500 2.5331 1.2996
2.4662 5.54 3000 2.1750 1.2341
1.9879 6.46 3500 1.3732 1.2693
1.4941 7.38 4000 0.8590 1.1900
1.1848 8.3 4500 0.6774 1.1339
0.9662 9.23 5000 0.5184 0.9856
0.8094 10.15 5500 0.4515 0.9504
0.6835 11.07 6000 0.3616 0.8457
0.6111 11.99 6500 0.3209 0.8254
0.5305 12.92 7000 0.3098 0.7902
0.479 13.84 7500 0.2964 0.7569
0.4369 14.76 8000 0.2447 0.7063
0.3836 15.68 8500 0.2676 0.7063
0.3628 16.61 9000 0.2714 0.7128
0.3416 17.53 9500 0.2664 0.6766
0.3297 18.45 10000 0.2510 0.6528
0.2883 19.37 10500 0.2636 0.6493
0.2694 20.3 11000 0.2556 0.6255
0.2655 21.22 11500 0.2328 0.6186
0.2364 22.14 12000 0.2293 0.6037
0.241 23.06 12500 0.2587 0.5928
0.2125 23.99 13000 0.2528 0.5843
0.2101 24.91 13500 0.2315 0.5719
0.1973 25.83 14000 0.2401 0.5769
0.1914 26.75 14500 0.2380 0.5610
0.1936 27.68 15000 0.2425 0.5551
0.1808 28.6 15500 0.2425 0.5556
0.1739 29.52 16000 0.2376 0.5541

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 1.18.3
  • Tokenizers 0.13.2
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.