segformer-b0-finetuned-segments-ic-chip-sample

This model is a fine-tuned version of nvidia/mit-b0 on the yijisuk/ic-chip-sample dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0772
  • Mean Iou: 0.4863
  • Mean Accuracy: 0.9725
  • Overall Accuracy: 0.9725
  • Accuracy Unlabeled: nan
  • Accuracy Circuit: 0.9725
  • Iou Unlabeled: 0.0
  • Iou Circuit: 0.9725

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Circuit Iou Unlabeled Iou Circuit
0.0885 1.0 20 0.0858 0.4907 0.9815 0.9815 nan 0.9815 0.0 0.9815
0.1764 2.0 40 0.0854 0.4734 0.9469 0.9469 nan 0.9469 0.0 0.9469
0.0569 3.0 60 0.0854 0.4702 0.9404 0.9404 nan 0.9404 0.0 0.9404
0.0959 4.0 80 0.0851 0.4893 0.9786 0.9786 nan 0.9786 0.0 0.9786
0.2969 5.0 100 0.0825 0.4863 0.9727 0.9727 nan 0.9727 0.0 0.9727
0.1979 6.0 120 0.0824 0.4873 0.9746 0.9746 nan 0.9746 0.0 0.9746
0.0906 7.0 140 0.0824 0.4740 0.9480 0.9480 nan 0.9480 0.0 0.9480
0.2879 8.0 160 0.0821 0.4882 0.9764 0.9764 nan 0.9764 0.0 0.9764
0.1366 9.0 180 0.0807 0.4833 0.9666 0.9666 nan 0.9666 0.0 0.9666
0.1664 10.0 200 0.0813 0.4860 0.9720 0.9720 nan 0.9720 0.0 0.9720
0.1521 11.0 220 0.0831 0.4830 0.9660 0.9660 nan 0.9660 0.0 0.9660
0.2004 12.0 240 0.0795 0.4825 0.9651 0.9651 nan 0.9651 0.0 0.9651
0.1547 13.0 260 0.0793 0.4812 0.9625 0.9625 nan 0.9625 0.0 0.9625
0.4191 14.0 280 0.0788 0.4830 0.9659 0.9659 nan 0.9659 0.0 0.9659
0.0431 15.0 300 0.0782 0.4815 0.9630 0.9630 nan 0.9630 0.0 0.9630
1.3911 16.0 320 0.0793 0.4820 0.9640 0.9640 nan 0.9640 0.0 0.9640
0.0217 17.0 340 0.0814 0.4836 0.9671 0.9671 nan 0.9671 0.0 0.9671
0.1116 18.0 360 0.0789 0.4839 0.9678 0.9678 nan 0.9678 0.0 0.9678
0.3295 19.0 380 0.0791 0.4763 0.9526 0.9526 nan 0.9526 0.0 0.9526
0.0327 20.0 400 0.0792 0.4829 0.9658 0.9658 nan 0.9658 0.0 0.9658
0.2542 21.0 420 0.0787 0.4861 0.9722 0.9722 nan 0.9722 0.0 0.9722
0.1587 22.0 440 0.0783 0.4772 0.9543 0.9543 nan 0.9543 0.0 0.9543
0.2721 23.0 460 0.0804 0.4913 0.9825 0.9825 nan 0.9825 0.0 0.9825
0.0505 24.0 480 0.0781 0.4827 0.9655 0.9655 nan 0.9655 0.0 0.9655
0.1417 25.0 500 0.0801 0.4834 0.9669 0.9669 nan 0.9669 0.0 0.9669
0.1371 26.0 520 0.0777 0.4838 0.9676 0.9676 nan 0.9676 0.0 0.9676
0.1282 27.0 540 0.0773 0.4807 0.9613 0.9613 nan 0.9613 0.0 0.9613
0.057 28.0 560 0.0772 0.4829 0.9657 0.9657 nan 0.9657 0.0 0.9657
0.2592 29.0 580 0.0807 0.4872 0.9744 0.9744 nan 0.9744 0.0 0.9744
0.1687 30.0 600 0.0794 0.4825 0.9649 0.9649 nan 0.9649 0.0 0.9649
0.499 31.0 620 0.0805 0.4853 0.9706 0.9706 nan 0.9706 0.0 0.9706
0.1584 32.0 640 0.0790 0.4845 0.9691 0.9691 nan 0.9691 0.0 0.9691
0.0689 33.0 660 0.0785 0.4845 0.9690 0.9690 nan 0.9690 0.0 0.9690
1.3764 34.0 680 0.0790 0.4848 0.9696 0.9696 nan 0.9696 0.0 0.9696
0.2597 35.0 700 0.0808 0.4875 0.9751 0.9751 nan 0.9751 0.0 0.9751
1.0757 36.0 720 0.0761 0.4841 0.9681 0.9681 nan 0.9681 0.0 0.9681
0.6112 37.0 740 0.0779 0.4825 0.9650 0.9650 nan 0.9650 0.0 0.9650
0.2899 38.0 760 0.0787 0.4796 0.9591 0.9591 nan 0.9591 0.0 0.9591
0.3402 39.0 780 0.0777 0.4838 0.9676 0.9676 nan 0.9676 0.0 0.9676
0.0183 40.0 800 0.0771 0.4829 0.9657 0.9657 nan 0.9657 0.0 0.9657
0.1407 41.0 820 0.0774 0.4809 0.9617 0.9617 nan 0.9617 0.0 0.9617
0.4045 42.0 840 0.0767 0.4819 0.9638 0.9638 nan 0.9638 0.0 0.9638
0.2159 43.0 860 0.0780 0.4850 0.9699 0.9699 nan 0.9699 0.0 0.9699
0.0541 44.0 880 0.0768 0.4812 0.9624 0.9624 nan 0.9624 0.0 0.9624
0.0638 45.0 900 0.0774 0.4863 0.9726 0.9726 nan 0.9726 0.0 0.9726
0.0409 46.0 920 0.0788 0.4875 0.9749 0.9749 nan 0.9749 0.0 0.9749
0.1662 47.0 940 0.0774 0.4871 0.9743 0.9743 nan 0.9743 0.0 0.9743
0.1636 48.0 960 0.0783 0.4860 0.9720 0.9720 nan 0.9720 0.0 0.9720
0.033 49.0 980 0.0791 0.4882 0.9764 0.9764 nan 0.9764 0.0 0.9764
0.171 50.0 1000 0.0772 0.4863 0.9725 0.9725 nan 0.9725 0.0 0.9725

Framework versions

  • Transformers 4.36.2
  • Pytorch 1.11.0+cu115
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yijisuk/segformer-b0-finetuned-segments-ic-chip-sample

Base model

nvidia/mit-b0
Finetuned
(353)
this model