File size: 4,582 Bytes
c409165
 
 
 
 
 
 
 
bdd3bb8
 
c409165
 
 
 
 
 
 
 
 
 
 
 
 
 
60100f0
c409165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54742f
 
c409165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e326dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
license: mit
license_link: https://huggingface.co/microsoft/Florence-2-large/resolve/main/LICENSE
pipeline_tag: image-text-to-text
tags:
- vision
- ocr
- segmentation
datasets:
- yifeihu/TFT-ID-1.0-coco
---

# TFT-ID: Table/Figure/Text IDentifier for academic papers

## Model Summary

TFT-ID (Table/Figure/Text IDentifier) is an object detection model finetuned to extract tables, figures, and text sections in academic papers created by [Yifei Hu](https://x.com/hu_yifei). 

![image/png](https://huggingface.co/yifeihu/TFT-ID-1.0/resolve/main/TFT-ID.png)

TFT-ID is finetuned from [microsoft/Florence-2](https://huggingface.co/microsoft/Florence-2-large) checkpoints.

- The model was finetuned with papers from Hugging Face Daily Papers. All 36,000+ bounding boxes are manually annotated and checked by [Yifei Hu](https://x.com/hu_yifei).
- TFT-ID model takes an image of a single paper page as the input, and return bounding boxes for all tables, figures, and text sections in the given page.
- The text sections contain clean text content perfect for downstream OCR workflows. I recommend using **TB-OCR-preview-0.1** [[HF]](https://huggingface.co/yifeihu/TB-OCR-preview-0.1) as the OCR model to convert the text sections into clean markdown and math latex output.

Object Detection results format: 
{'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...], 
'labels': ['label1', 'label2', ...]} }

## Training Code and Dataset
- Dataset: Coming soon.
- Code: [github.com/ai8hyf/TF-ID](https://github.com/ai8hyf/TF-ID)

## Benchmarks

The model was tested on paper pages outside the training dataset. The papers are a subset of huggingface daily paper.

Correct output - the model draws correct bounding boxes for every table/figure/text section in the given page and **does not missing any content**.

Task 1: Table, Figure, and Text Section Identification
| Model                                                         | Total Images | Correct Output | Success Rate |
|---------------------------------------------------------------|--------------|----------------|--------------|
| TFT-ID-1.0[[HF]](https://huggingface.co/yifeihu/TFT-ID-1.0)   | 373          | 361            | 96.78%       |

Task 2: Table and Figure Identification
| Model                                                         | Total Images | Correct Output | Success Rate |
|---------------------------------------------------------------|--------------|----------------|--------------|
| **TFT-ID-1.0**[[HF]](https://huggingface.co/yifeihu/TFT-ID-1.0)   | 258          | 255            | **98.84%**       |
| TF-ID-large[[HF]](https://huggingface.co/yifeihu/TF-ID-large) | 258          | 253            | 98.06%       |

Note: Depending on the use cases, some "incorrect" output could be totally usable. For example, the model draw two bounding boxes for one figure with two child components.
 
## How to Get Started with the Model

Use the code below to get started with the model.

For non-CUDA environments, please check out this post for a simple patch: [https://huggingface.co/microsoft/Florence-2-base/discussions/4](https://huggingface.co/microsoft/Florence-2-base/discussions/4)

```python
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM 

model = AutoModelForCausalLM.from_pretrained("yifeihu/TFT-ID-1.0", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("yifeihu/TFT-ID-1.0", trust_remote_code=True)

prompt = "<OD>"

url = "https://huggingface.co/yifeihu/TF-ID-base/resolve/main/arxiv_2305_10853_5.png?download=true"
image = Image.open(requests.get(url, stream=True).raw)

inputs = processor(text=prompt, images=image, return_tensors="pt")

generated_ids = model.generate(
    input_ids=inputs["input_ids"],
    pixel_values=inputs["pixel_values"],
    max_new_tokens=1024,
    do_sample=False,
    num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))

print(parsed_answer)

```

To visualize the results, see [this tutorial notebook](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-florence-2-on-detection-dataset.ipynb) for more details.

## BibTex and citation info

```
@misc{TF-ID,
  author = {Yifei Hu},
  title = {TF-ID: Table/Figure IDentifier for academic papers},
  year = {2024},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ai8hyf/TF-ID}},
}
```