File size: 3,601 Bytes
7b07d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d63688
7b07d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcace66
7b07d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
datasets:
- ehartford/dolphin
- LinhDuong/chatdoctor-200k
- sahil2801/code_instructions_120k
- c-s-ale/dolly-15k-instruction-alpaca-format
- tiiuae/falcon-refinedweb
- bigcode/starcoderdata
- togethercomputer/RedPajama-Data-1T
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- instruct
- medical
- code
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This model is an instruction-tuned LLaMa model with 33B parameters, with specialities in medical QA and code instruction.

## Model Details

<!-- Provide a longer summary of what this model is. -->

- **Model type:** LlamaForCausalLM
- **Language(s) (NLP):** English
- **License:** As a Llama-derivative, this model cannot be used commercially.
- **Finetuned from model (QLoRA):** [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b)

## Training Details

### Training Data

Converted the following datasets to alpaca:instruction format.

1. [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin)
  - ORCA style dataset generously created by [Eric Hartford](https://huggingface.co/ehartford)
2. [LinhDuong/chatdoctor-200k](https://huggingface.co/datasets/LinhDuong/chatdoctor-200k)
  - Refined dataset sourced from icliniq medical QA forum
3. [sahil2801/code_instructions_120k](https://huggingface.co/datasets/sahil2801/code_instructions_120k)
  - Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI
4. [c-s-ale/dolly-15k-instruction-alpaca-format](https://huggingface.co/datasets/c-s-ale/dolly-15k-instruction-alpaca-format)
  - Dolly 15k is a general instruction dataset generated by employees of Databricks.

### Training Procedure 

Trained using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) QLoRa on [RunPod](https://www.runpod.io/console/gpu-cloud) 8x A6000 on Community Cloud for 1 epochs (~23 hours - ~$110).

<details>
  <summary>axolotl training config:</summary>
  
```yaml
base_model: huggyllama/llama-30b
base_model_config: huggyllama/llama-30b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false

push_dataset_to_hub:
hub_model_id:
hf_use_auth_token:

datasets:
  - path: ehartford/dolphin
    type: alpaca
    data_files:
      - flan1m-alpaca-uncensored.jsonl
      - flan5m-alpaca-uncensored.jsonl
    shards: 25
  - path: sahil2801/code_instructions_120k
    type: alpaca
  - path: LinhDuong/chatdoctor-200k
    type: alpaca
    shards: 2
  - path: c-s-ale/dolly-15k-instruction-alpaca-format
    type: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0.01
adapter: qlora
lora_model_dir:
sequence_len: 2048
max_packed_sequence_len: 2048
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_mode: true
wandb_project: med-orca-instruct-33b
wandb_watch:
wandb_run_id:
wandb_log_model: 'openllama_checkpoint'
output_dir: /disk/med-instruct-33b
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 2
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 100
eval_steps: 20
save_steps:
debug:
deepspeed: true
weight_decay: 0.00001
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```
</details>