|
--- |
|
datasets: |
|
- ehartford/dolphin |
|
- LinhDuong/chatdoctor-200k |
|
- sahil2801/code_instructions_120k |
|
- c-s-ale/dolly-15k-instruction-alpaca-format |
|
- tiiuae/falcon-refinedweb |
|
- bigcode/starcoderdata |
|
- togethercomputer/RedPajama-Data-1T |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- instruct |
|
- medical |
|
- code |
|
--- |
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This model is an instruction-tuned LLaMa model with 33B parameters, with specialities in medical QA and code instruction. |
|
|
|
## Model Details |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
- **Model type:** LlamaForCausalLM |
|
- **Language(s) (NLP):** English |
|
- **License:** As a Llama-derivative, this model cannot be used commercially. |
|
- **Finetuned from model (QLoRA):** [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
Converted the following datasets to alpaca:instruction format. |
|
|
|
1. [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) |
|
- ORCA style dataset generously created by [Eric Hartford](https://huggingface.co/ehartford) |
|
2. [LinhDuong/chatdoctor-200k](https://huggingface.co/datasets/LinhDuong/chatdoctor-200k) |
|
- Refined dataset sourced from icliniq medical QA forum |
|
3. [sahil2801/code_instructions_120k](https://huggingface.co/datasets/sahil2801/code_instructions_120k) |
|
- Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI |
|
4. [c-s-ale/dolly-15k-instruction-alpaca-format](https://huggingface.co/datasets/c-s-ale/dolly-15k-instruction-alpaca-format) |
|
- Dolly 15k is a general instruction dataset generated by employees of Databricks. |
|
|
|
### Training Procedure |
|
|
|
Trained using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) QLoRa on [RunPod](https://www.runpod.io/console/gpu-cloud) 8x A6000 on Community Cloud for 1 epochs (~23 hours - ~$110). |
|
|
|
<details> |
|
<summary>axolotl training config:</summary> |
|
|
|
```yaml |
|
base_model: huggyllama/llama-30b |
|
base_model_config: huggyllama/llama-30b |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
push_dataset_to_hub: |
|
hub_model_id: |
|
hf_use_auth_token: |
|
|
|
datasets: |
|
- path: ehartford/dolphin |
|
type: alpaca |
|
data_files: |
|
- flan1m-alpaca-uncensored.jsonl |
|
- flan5m-alpaca-uncensored.jsonl |
|
shards: 25 |
|
- path: sahil2801/code_instructions_120k |
|
type: alpaca |
|
- path: LinhDuong/chatdoctor-200k |
|
type: alpaca |
|
shards: 2 |
|
- path: c-s-ale/dolly-15k-instruction-alpaca-format |
|
type: alpaca |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.01 |
|
adapter: qlora |
|
lora_model_dir: |
|
sequence_len: 2048 |
|
max_packed_sequence_len: 2048 |
|
lora_r: 8 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_modules: |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_mode: true |
|
wandb_project: med-orca-instruct-33b |
|
wandb_watch: |
|
wandb_run_id: |
|
wandb_log_model: 'openllama_checkpoint' |
|
output_dir: /disk/med-instruct-33b |
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 4 |
|
num_epochs: 1 |
|
optimizer: paged_adamw_32bit |
|
torchdistx_path: |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: true |
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 2 |
|
xformers_attention: true |
|
flash_attention: |
|
gptq_groupsize: |
|
gptq_model_v1: |
|
warmup_steps: 100 |
|
eval_steps: 20 |
|
save_steps: |
|
debug: |
|
deepspeed: true |
|
weight_decay: 0.00001 |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
</details> |