Edit model card

A Named Entity Recognition Model for Kazakh

How to use

You can use this model with the Transformers pipeline for NER.

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

tokenizer = AutoTokenizer.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")
model = AutoModelForTokenClassification.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")

# aggregation_strategy = "none"
nlp = pipeline("ner", model = model, tokenizer = tokenizer, aggregation_strategy = "none")
example = "Қазақстан Республикасы — Шығыс Еуропа мен Орталық Азияда орналасқан мемлекет."

ner_results = nlp(example)
for result in ner_results:
    print(result)

# output:
# {'entity': 'B-GPE', 'score': 0.9995646, 'index': 1, 'word': '▁Қазақстан', 'start': 0, 'end': 9}
# {'entity': 'I-GPE', 'score': 0.9994935, 'index': 2, 'word': '▁Республикасы', 'start': 10, 'end': 22}
# {'entity': 'B-LOCATION', 'score': 0.99906737, 'index': 4, 'word': '▁Шығыс', 'start': 25, 'end': 30}
# {'entity': 'I-LOCATION', 'score': 0.999153, 'index': 5, 'word': '▁Еуропа', 'start': 31, 'end': 37}
# {'entity': 'B-LOCATION', 'score': 0.9991597, 'index': 7, 'word': '▁Орталық', 'start': 42, 'end': 49}
# {'entity': 'I-LOCATION', 'score': 0.9991725, 'index': 8, 'word': '▁Азия', 'start': 50, 'end': 54}
# {'entity': 'I-LOCATION', 'score': 0.9992299, 'index': 9, 'word': 'да', 'start': 54, 'end': 56}

token = ""
label_list = []
token_list = []

for result in ner_results:
    if result["word"].startswith("▁"):
        if token:
            token_list.append(token.replace("▁", ""))
        token = result["word"]
        label_list.append(result["entity"])
    else:
        token += result["word"]

token_list.append(token.replace("▁", ""))

for token, label in zip(token_list, label_list):
    print(f"{token}\t{label}")

# output:
# Қазақстан	B-GPE
# Республикасы	I-GPE
# Шығыс	B-LOCATION
# Еуропа	I-LOCATION
# Орталық	B-LOCATION
# Азияда	I-LOCATION

# aggregation_strategy = "simple"
nlp = pipeline("ner", model = model, tokenizer = tokenizer, aggregation_strategy = "simple")
example = "Қазақстан Республикасы — Шығыс Еуропа мен Орталық Азияда орналасқан мемлекет."

ner_results = nlp(example)
for result in ner_results:
    print(result)

# output:
# {'entity_group': 'GPE', 'score': 0.999529, 'word': 'Қазақстан Республикасы', 'start': 0, 'end': 22}
# {'entity_group': 'LOCATION', 'score': 0.9991102, 'word': 'Шығыс Еуропа', 'start': 25, 'end': 37}
# {'entity_group': 'LOCATION', 'score': 0.9991874, 'word': 'Орталық Азияда', 'start': 42, 'end': 56}

Evaluation results on the validation and test sets

Validation set Test set
Precision Recall F1-score Precision Recall F1-score
96.58% 96.66% 96.62% 96.49% 96.86% 96.67%

Model performance for the NE classes of the validation set

NE Class Precision Recall F1-score Support
ADAGE 90.00% 47.37% 62.07% 19
ART 91.36% 95.48% 93.38% 155
CARDINAL 98.44% 98.37% 98.40% 2,878
CONTACT 100.00% 83.33% 90.91% 18
DATE 97.38% 97.27% 97.33% 2,603
DISEASE 96.72% 97.52% 97.12% 121
EVENT 83.24% 93.51% 88.07% 154
FACILITY 68.95% 84.83% 76.07% 178
GPE 98.46% 96.50% 97.47% 1,656
LANGUAGE 95.45% 89.36% 92.31% 47
LAW 87.50% 87.50% 87.50% 56
LOCATION 92.49% 93.81% 93.14% 210
MISCELLANEOUS 100.00% 76.92% 86.96% 26
MONEY 99.56% 100.00% 99.78% 455
NON_HUMAN 0.00% 0.00% 0.00% 1
NORP 95.71% 95.45% 95.58% 374
ORDINAL 98.14% 95.84% 96.98% 385
ORGANISATION 92.19% 90.97% 91.58% 753
PERCENTAGE 99.08% 99.08% 99.08% 437
PERSON 98.47% 98.72% 98.60% 1,175
POSITION 96.15% 97.79% 96.96% 587
PRODUCT 89.06% 78.08% 83.21% 73
PROJECT 92.13% 95.22% 93.65% 209
QUANTITY 97.58% 98.30% 97.94% 411
TIME 94.81% 96.63% 95.71% 208
micro avg 96.58% 96.66% 96.62% 13,189
macro avg 90.12% 87.51% 88.39% 13,189
weighted avg 96.67% 96.66% 96.63% 13,189

Model performance for the NE classes of the test set

NE Class Precision Recall F1-score Support
ADAGE 71.43% 29.41% 41.67% 17
ART 95.71% 96.89% 96.30% 161
CARDINAL 98.43% 98.60% 98.51% 2,789
CONTACT 94.44% 85.00% 89.47% 20
DATE 96.59% 97.60% 97.09% 2,584
DISEASE 87.69% 95.80% 91.57% 119
EVENT 86.67% 92.86% 89.66% 154
FACILITY 74.88% 81.73% 78.16% 197
GPE 98.57% 97.81% 98.19% 1,691
LANGUAGE 90.70% 95.12% 92.86% 41
LAW 93.33% 76.36% 84.00% 55
LOCATION 92.08% 89.42% 90.73% 208
MISCELLANEOUS 86.21% 96.15% 90.91% 26
MONEY 100.00% 100.00% 100.00% 427
NON_HUMAN 0.00% 0.00% 0.00% 1
NORP 99.46% 99.18% 99.32% 368
ORDINAL 96.63% 97.64% 97.14% 382
ORGANISATION 90.97% 91.23% 91.10% 718
PERCENTAGE 98.05% 98.05% 98.05% 462
PERSON 98.70% 99.13% 98.92% 1,151
POSITION 96.36% 97.65% 97.00% 597
PRODUCT 89.23% 77.33% 82.86% 75
PROJECT 93.69% 93.69% 93.69% 206
QUANTITY 97.26% 97.02% 97.14% 403
TIME 94.95% 94.09% 94.52% 220
micro avg 96.54% 96.85% 96.69% 13,072
macro avg 88.88% 87.11% 87.55% 13,072
weighted avg 96.55% 96.85% 96.67% 13,072
Downloads last month
104
Safetensors
Model size
559M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yeshpanovrustem/xlm-roberta-large-ner-kazakh

Space using yeshpanovrustem/xlm-roberta-large-ner-kazakh 1