|
--- |
|
language: |
|
- hi |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_7_0 |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_7_0 |
|
model-index: |
|
- name: xls-r-300m-yaswanth-hindi2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-300m-yaswanth-hindi2 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7163 |
|
- Wer: 0.6951 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0007 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 4.986 | 4.46 | 500 | 2.0194 | 1.1857 | |
|
| 0.9232 | 8.93 | 1000 | 1.2665 | 0.8435 | |
|
| 0.5094 | 13.39 | 1500 | 1.2473 | 0.7893 | |
|
| 0.3618 | 17.86 | 2000 | 1.3675 | 0.7789 | |
|
| 0.2914 | 22.32 | 2500 | 1.3725 | 0.7914 | |
|
| 0.2462 | 26.79 | 3000 | 1.4567 | 0.7795 | |
|
| 0.228 | 31.25 | 3500 | 1.6179 | 0.7872 | |
|
| 0.1995 | 35.71 | 4000 | 1.4932 | 0.7555 | |
|
| 0.1878 | 40.18 | 4500 | 1.5352 | 0.7480 | |
|
| 0.165 | 44.64 | 5000 | 1.5238 | 0.7440 | |
|
| 0.1514 | 49.11 | 5500 | 1.5842 | 0.7498 | |
|
| 0.1416 | 53.57 | 6000 | 1.6662 | 0.7524 | |
|
| 0.1351 | 58.04 | 6500 | 1.6280 | 0.7356 | |
|
| 0.1196 | 62.5 | 7000 | 1.6329 | 0.7250 | |
|
| 0.1109 | 66.96 | 7500 | 1.6435 | 0.7302 | |
|
| 0.1008 | 71.43 | 8000 | 1.7058 | 0.7170 | |
|
| 0.0907 | 75.89 | 8500 | 1.6880 | 0.7387 | |
|
| 0.0816 | 80.36 | 9000 | 1.6957 | 0.7031 | |
|
| 0.0743 | 84.82 | 9500 | 1.7547 | 0.7222 | |
|
| 0.0694 | 89.29 | 10000 | 1.6974 | 0.7117 | |
|
| 0.0612 | 93.75 | 10500 | 1.7251 | 0.7020 | |
|
| 0.0577 | 98.21 | 11000 | 1.7163 | 0.6951 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|