File size: 2,856 Bytes
f6d4e66 acfc83b f6d4e66 acfc83b f6d4e66 d5e87bb f6d4e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
language:
- hi
license: apache-2.0
tags:
- generated_from_trainer
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: xls-r-300m-yaswanth-hindi2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-300m-yaswanth-hindi2
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7163
- Wer: 0.6951
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0007
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 4.986 | 4.46 | 500 | 2.0194 | 1.1857 |
| 0.9232 | 8.93 | 1000 | 1.2665 | 0.8435 |
| 0.5094 | 13.39 | 1500 | 1.2473 | 0.7893 |
| 0.3618 | 17.86 | 2000 | 1.3675 | 0.7789 |
| 0.2914 | 22.32 | 2500 | 1.3725 | 0.7914 |
| 0.2462 | 26.79 | 3000 | 1.4567 | 0.7795 |
| 0.228 | 31.25 | 3500 | 1.6179 | 0.7872 |
| 0.1995 | 35.71 | 4000 | 1.4932 | 0.7555 |
| 0.1878 | 40.18 | 4500 | 1.5352 | 0.7480 |
| 0.165 | 44.64 | 5000 | 1.5238 | 0.7440 |
| 0.1514 | 49.11 | 5500 | 1.5842 | 0.7498 |
| 0.1416 | 53.57 | 6000 | 1.6662 | 0.7524 |
| 0.1351 | 58.04 | 6500 | 1.6280 | 0.7356 |
| 0.1196 | 62.5 | 7000 | 1.6329 | 0.7250 |
| 0.1109 | 66.96 | 7500 | 1.6435 | 0.7302 |
| 0.1008 | 71.43 | 8000 | 1.7058 | 0.7170 |
| 0.0907 | 75.89 | 8500 | 1.6880 | 0.7387 |
| 0.0816 | 80.36 | 9000 | 1.6957 | 0.7031 |
| 0.0743 | 84.82 | 9500 | 1.7547 | 0.7222 |
| 0.0694 | 89.29 | 10000 | 1.6974 | 0.7117 |
| 0.0612 | 93.75 | 10500 | 1.7251 | 0.7020 |
| 0.0577 | 98.21 | 11000 | 1.7163 | 0.6951 |
### Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|