xls-r-300m-yaswanth-hindi2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7163
  • Wer: 0.6951

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0007
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.986 4.46 500 2.0194 1.1857
0.9232 8.93 1000 1.2665 0.8435
0.5094 13.39 1500 1.2473 0.7893
0.3618 17.86 2000 1.3675 0.7789
0.2914 22.32 2500 1.3725 0.7914
0.2462 26.79 3000 1.4567 0.7795
0.228 31.25 3500 1.6179 0.7872
0.1995 35.71 4000 1.4932 0.7555
0.1878 40.18 4500 1.5352 0.7480
0.165 44.64 5000 1.5238 0.7440
0.1514 49.11 5500 1.5842 0.7498
0.1416 53.57 6000 1.6662 0.7524
0.1351 58.04 6500 1.6280 0.7356
0.1196 62.5 7000 1.6329 0.7250
0.1109 66.96 7500 1.6435 0.7302
0.1008 71.43 8000 1.7058 0.7170
0.0907 75.89 8500 1.6880 0.7387
0.0816 80.36 9000 1.6957 0.7031
0.0743 84.82 9500 1.7547 0.7222
0.0694 89.29 10000 1.6974 0.7117
0.0612 93.75 10500 1.7251 0.7020
0.0577 98.21 11000 1.7163 0.6951

Framework versions

  • Transformers 4.16.0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yaswanth/xls-r-300m-yaswanth-hindi2