Edit model card

convberturk-keyword-extractor

This model is a fine-tuned version of dbmdz/convbert-base-turkish-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4098
  • Precision: 0.6742
  • Recall: 0.7035
  • Accuracy: 0.9175
  • F1: 0.6886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
0.174 1.0 1875 0.1920 0.6546 0.6869 0.9184 0.6704
0.1253 2.0 3750 0.2030 0.6527 0.7317 0.9179 0.6900
0.091 3.0 5625 0.2517 0.6499 0.7473 0.9163 0.6952
0.0684 4.0 7500 0.2828 0.6633 0.7270 0.9167 0.6937
0.0536 5.0 9375 0.3307 0.6706 0.7194 0.9180 0.6942
0.0384 6.0 11250 0.3669 0.6655 0.7161 0.9157 0.6898
0.0316 7.0 13125 0.3870 0.6792 0.7002 0.9176 0.6895
0.0261 8.0 15000 0.4098 0.6742 0.7035 0.9175 0.6886

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
3
Hosted inference API
Token Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.