File size: 4,754 Bytes
45ce746
 
 
 
 
eabe967
45ce746
 
 
eabe967
 
 
 
 
45ce746
 
 
 
 
 
 
 
 
 
eabe967
45ce746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
- alignment-handbook
- trl
- simpo
- generated_from_trainer
- trl
- simpo
- generated_from_trainer
datasets:
- yakazimir/ultrafeedback_binarized
model-index:
- name: qwen_uncCPO_entropy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qwen_uncCPO_entropy

This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Rewards/chosen: -46.3149
- Rewards/rejected: -47.3422
- Rewards/accuracies: 0.5616
- Rewards/margins: 1.0272
- Logps/rejected: -47.3422
- Logps/chosen: -46.3149
- Logits/rejected: 7.3215
- Logits/chosen: 7.6457

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.0           | 0.2141 | 400  | 0.0001          | -31.9619       | -33.7423         | 0.5660             | 1.7804          | -33.7423       | -31.9619     | 4.6072          | 4.6195        |
| 0.0           | 0.4282 | 800  | 0.0000          | -39.5193       | -40.9236         | 0.5593             | 1.4042          | -40.9236       | -39.5193     | 6.2657          | 6.4289        |
| 0.0008        | 0.6422 | 1200 | 0.0000          | -39.2251       | -40.6025         | 0.5542             | 1.3774          | -40.6025       | -39.2251     | 6.1312          | 6.2908        |
| 0.0           | 0.8563 | 1600 | 0.0000          | -41.1464       | -42.5420         | 0.5638             | 1.3956          | -42.5420       | -41.1464     | 6.3830          | 6.5549        |
| 0.0           | 1.0704 | 2000 | 0.0000          | -43.4369       | -44.6769         | 0.5734             | 1.2400          | -44.6769       | -43.4369     | 6.8661          | 7.0992        |
| 0.0           | 1.2845 | 2400 | 0.0000          | -43.9619       | -45.1746         | 0.5697             | 1.2127          | -45.1746       | -43.9619     | 6.9058          | 7.1560        |
| 0.0           | 1.4986 | 2800 | 0.0000          | -44.1897       | -45.3701         | 0.5645             | 1.1803          | -45.3701       | -44.1897     | 6.8977          | 7.1567        |
| 0.0           | 1.7127 | 3200 | 0.0000          | -44.9141       | -46.0263         | 0.5660             | 1.1122          | -46.0263       | -44.9141     | 7.0833          | 7.3687        |
| 0.0           | 1.9267 | 3600 | 0.0000          | -45.5997       | -46.6466         | 0.5645             | 1.0470          | -46.6466       | -45.5997     | 7.1427          | 7.4593        |
| 0.0           | 2.1408 | 4000 | 0.0000          | -45.8198       | -46.8818         | 0.5601             | 1.0620          | -46.8818       | -45.8198     | 7.2832          | 7.5923        |
| 0.0           | 2.3549 | 4400 | 0.0000          | -45.8900       | -46.9389         | 0.5653             | 1.0489          | -46.9389       | -45.8900     | 7.2655          | 7.5788        |
| 0.0           | 2.5690 | 4800 | 0.0000          | -45.9866       | -47.0244         | 0.5623             | 1.0378          | -47.0244       | -45.9866     | 7.2594          | 7.5758        |
| 0.0           | 2.7831 | 5200 | 0.0000          | -45.8574       | -46.9081         | 0.5623             | 1.0507          | -46.9081       | -45.8574     | 7.2536          | 7.5634        |
| 0.0           | 2.9972 | 5600 | 0.0000          | -46.3149       | -47.3422         | 0.5616             | 1.0272          | -47.3422       | -46.3149     | 7.3215          | 7.6457        |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1